
PHYSICAL REVIEW E, VOLUME 65, 041908
Dynamics of rumor propagation on small-world networks

Damián H. Zanette
Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, Centro Ato´mico Bariloche and Instituto Balseiro, 8400 Bariloche,

Rı́o Negro, Argentina
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We study the dynamics of an epidemiclike model for the spread of a rumor on a small-world network. It has
been shown that this model exhibits a transition between regimes of localization and propagation at a finite
value of the network randomness. Here, by numerical means, we perform a quantitative characterization of the
evolution in the two regimes. The variant of dynamic small worlds, where the quenched disorder of small-
world networks is replaced by randomly changing connections between individuals, is also analyzed in detail
and compared with a mean-field approximation.
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I. INTRODUCTION

The networks that underlie real social interactions, wh
nodes represent single individuals and whose links con
individuals that are expected to interact, vary with time a
strongly depend on the kind of interactions involved. Gen
ally, however, social networks exhibit two specific topolog
cal properties that are closely related to the nature of so
interactions. First, they are highly clustered, which mea
that two randomly chosen neighbors of a given individu
have a relatively large probability of being in turn mutu
neighbors. Second, the distance between any two node
the network, measured as the number of links of the minim
path connecting the two nodes, is on the average very s
as compared with the total number of nodes or links. Thi
the so-called small-world effect. Small-world networ
~SWNs! constitute a mathematical model for social netwo
that captures these two properties@1#. They are partially dis-
ordered networks, interpolating between regular lattices
fully random graphs. In fact,N-node regular lattices with
connections beyond nearest neighbors have high cluste
but the average distance between nodes is of orderN. On the
other hand, the average distance in random networks i
order lnN!N, but the probability that two neighbors of
given node are mutual neighbors is of orderN21. For mod-
erate disorder, SWNs preserve the two desirable propertie
ordered and random networks@2–5#, and are, therefore, a
convenient tool for the mathematical study of social p
cesses@6#.

Small-world networks are built starting from an order
lattice with moderately high connectivity, which insures hi
clustering. Then, each link is removed with probabilityp and
reconnected between two randomly selected nodes. This
cess creates a shortcut between two otherwise distant reg
of the network. The probabilityp measures the degree o
disorder orrandomnessof the resulting graph. Forp50 or-
der is fully preserved, while forp51 a random graph is
obtained. Note, however, that the average connectivity
constant.

Topological properties of SWNs, such as the average
tance between nodes, display a crossover from the beha
observed in regular lattices to that of random graphs a
randomnessp;N21. In the limit of an infinitely large net-
1063-651X/2002/65~4!/041908~9!/$20.00 65 0419
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work, a critical transition between both regimes occurs
pc50 @7,8#. Similar transitions at the same critical point a
found for some simple dynamical processes on SWNs, s
as for Ising-like spin systems@5# and ensembles of couple
oscillators. In contrast, it has been recently shown that o
kinds of processes display a transition between qualitativ
different dynamical regimes at finite values of the rando
ness. Specifically, in an epidemiological model where an
tially susceptible individual infected by contagion undergo
a disease cycle that returns to the susceptible state, a tr
tion at finite p occurs between a regime where the dise
cycles of different individuals are temporally uncorrect
~low p) to a regime where the cycles synchronize~high p)
@9#. Moreover, in an epidemiclike model for rumor propag
tion a quantitatively similar transition has been found b
tween a regime where the rumor remains localized~low p)
to a regime where it spreads over a finite fraction of t
network ~high p) @10#.

The critical-phenomenon nature of the transition found
the model of rumor propagation has been convincin
proven by means of finite-size scaling analysis@10#. This
paper, on the other hand, focuses on a detailed characte
tion of the dynamical properties of the same model, w
emphasis on the effects introduced by the small-world top
ogy. In the following section we introduce the model a
summarize the main results on the critical transition betw
the regimes of localization and propagation. The core of
paper, Secs. III and IV, is devoted to establishing the conn
tion between the several parameters of our model and s
able quantities that characterize its evolution. This is do
both in quenched small-world networks and in the so-cal
dynamic small worlds, where quenched disorder in the in
action links is replaced by stochastic choice of the interact
partners. We emphasize similarities and differences betw
both cases. Finally, we summarize and discuss the main
sults.

II. MODEL OF RUMOR PROPAGATION

Consider a population formed byN individuals where, at
each time step, each individual adopts one of three poss
states. In the first state, the individual has not heard the
mor yet. In the second state, the individual is aware of
©2002 The American Physical Society08-1
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DAMIÁ N H. ZANETTE PHYSICAL REVIEW E65 041908
rumor and is willing to transmit it. Finally, in the third state
the individual has heard the rumor but has lost the interes
it, and does not transmit it. By analogy with SI
~susceptible-infected-refractory! epidemiological models
@11#, these three states are, respectively, called suscep
infected, and refractory. At the beginning, only one ind
vidual is infected and all the remnant population is susc
tible. The dynamical rules act as follows@12#. At each time
step, an individuali is chosen at random from the infecte
population. This individual contacts one of her neighbo
sayj. If j is in the susceptible state,i transmits the rumor and
j becomes infected. If, on the other hand,j is already infected
or refractory, theni loses her interest in the rumor and b
comes refractory.

In qualitative terms, the dynamics can be summarized
follows. In the first stage of the evolution, the number
infected individuals increases and, at a lower rate, the ref
tory population grows as well. As a consequence, the c
tacts of infected individuals between themselves and w
refractory individuals become more frequent. Eventually,
infected population begins to decline and vanishes, and
evolution stops. At the end, the population is divided into
group ofNR refractory individuals, who have been infecte
at some stage during the evolution, and a group of sus
tible individuals who have never heard the rumor. It has b
shown @13# that, in the case where contacts can be es
lished between any two individuals in the population, t
fractionr 5^NR&/N of refractory individuals at the end of th
evolution—averaged over a large number of realizations
the system—approaches a well-defined limitr * for asymp-
totically large systems,N→`. This fraction is given by the
nontrivial solution to the transcendental equation

r * 512exp~22r * !, ~1!

i.e., r * '0.796. In other words, some 20% of the populati
never becomes aware of the rumor.

We are here interested in the case where contacts betw
individuals are established along the links imposed by a
cially plausible structure, namely, a small-world network.
advanced in the Introduction, SWNs are built starting fro
an ordered lattice, with one individual at each node.
choose a one-dimensional array with periodic boundary c
ditions, where each node is connected to its 2K nearest
neighbors, i.e., to theK nearest neighbors clockwise an
counterclockwise. Then each of theK clockwise connections
of each nodei is rewired with probabilityp to a randomly
chosen nodej, not belonging to the neighborhood ofi. A
shortcut is thus created. We avoid double and multiple lin
between node, and discard realizations where the SWN
comes disconnected.

Previous analysis of this system, focused on the cha
terization of its final state, has revealed that a critical tran
tion between two well-differentiated regimes occurs at a
nite valuepc of the randomness@10#. For p,pc , the final
numberNR of refractory individuals, when averaged ov
many realizations of the system, is independent of the po
lation size. Therefore, asN→`, the ratior 5^NR&/N tends
to vanish. In such limit, only an infinitesimal fraction of th
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population becomes aware of the rumor, which remains
calized in a small neighborhood of its origin. On the oth
hand, forp.pc the average value ofr approaches a constan
asN grows. Finite-size scaling analysis in the specific case
K52 shows that, for asymptotically large systems,

r;up2pcug, ~2!

with pc'0.19 andg'2.2. For larger values ofK, the critical
randomnesspc decreases. The exponentg, in contrast, seems
to be universal.

A clue to the origin of the localization-propagation tra
sition is provided by the distributionf (NR) of values ofNR
over large series of realizations of our system for fixedK, p,
and N. Figure 1 shows those distributions forK52, two
values ofp—below and above the transition—and three v
ues ofN. At each realization, the SWN is constructed ane
and the initially infected individual is randomly chosen fro
the whole population. Forp,pc the distribution is approxi-
mately exponential, and does not depend onN. Conse-
quently, the average valuêNR& is also independent of the
system size and, as advanced above, the ratior 5^NR&/N
decreases asN grows. More specifically,r;N21 for largeN.
In a typical realization forp,pc the rumor remains localized
due to the high interconnectivity of the network at the loc
level and the scarce density of shortcuts. Transmission
curs between a small group of individuals that rapidly lo
their interest in the rumor, and propagation to distant regi
is highly improbable.

In contrast, the distribution forp.pc is bimodal, with
two maxima separated by a local minimum. The small-NR
regime is still independent ofN and attains a maximum nea
NR50. On the other hand, for large values ofNR , we find an
additional bumplike structure, which changes with the s

FIG. 1. Normalized frequency distributionf (NR) of the number
of refractory individuals at the end of the evolution,NR , for K
52 and two values of the small-world randomness,~a! p50.05 and
~b! p50.3. Different symbols correspond toN5103 ~triangles!, N
5104 ~squares!, andN5105 ~circles!. Frequency counts were ob
tained from series of 105 realizations for each parameter set.
8-2
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DYNAMICS OF RUMOR PROPAGATION ON SMALL- . . . PHYSICAL REVIEW E 65 041908
tem size. Specifically, the position of its maximumNR
max

shifts rightward asN grows, asNR
max'0.25N. Since, mean-

while, the area under the bump remains almost constant,
additional structure produces a contribution of orderN to the
average valuêNR&. Consequently,r is finite above the tran-
sition. While in a realization belonging to the small-NR re-
gime the rumor remains localized as in the case ofp,pc , a
typical realization contributing to the bump includes prop
gation through several shortcuts, thus attaining distant
gions in the system.

For p'pc , the distribution~not shown in Fig. 1! exhibits
power-law dependence for moderate values ofNR , f (NR)
;NR

2a with a'1.5. The power-law regime terminates at
smooth cutoff, whose position shifts to the right as the s
tem size increases, approximately asN0.5 @10#.

The localization-propagation transition of our model h
been described in terms of static features, namely, the
refractory populationNR , measured when all the interactio
events have ceased. In the following section, we focus on
central interest here and study the dynamics of the prop
tion process.

III. EVOLUTION OF THE INFECTED POPULATION

A complete characterization of the propagation proces
our model is given by the evolution of the infected popu
tion. Initially, all the population is susceptible, except for
infected individual. Then, at each evolution step, either
number of infected individualsnI increases tonI11 at the
expense of the susceptible population, ornI decreases tonI
21 and the refractory population grows accordingly. The
fore, the evolution of the number of both susceptible a
refractory individuals is implicit in the evolution ofnI . In
order to givenI as a function of time, it must be taken int
account that the number of infected individuals varies a
consequently, the real-time durationdt of an evolution step
changes. Since at each step an infected individual is cho
at random,dt must be proportional to the probability o
choosing that individual, i.e., to the frequency of such eve
dt}nI

21 . Therefore, time is to be updated according to

t→t1
t0

nI~ t !
, ~3!

where the constantt0 fixes time units. We chooset051, so
that the unit of time can be associated with the typical ti
needed by a single infected individual to establish a con
with one of her neighbors.

Figure 2 shows the evolution of the number of infect
individuals as a function of time for two single realizatio
with N5105 and K52, for two values of the network ran
domness,p50.05 and 0.3. Forp50.05 the final number of
refractory individuals isNR532, while for p50.3 we have
NR522,258. This latter realization belongs to the large-NR
bump structure inf (NR) for the corresponding value ofp.
Realizations for the same randomness but in the smallNR
region are qualitatively similar to that shown in Fig. 2~a!.

The graph ofnI as a function of time for smallp—or, for
p.pc , in the region of smallNR—is reminiscent of a ran-
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dom walk. As a matter of fact, the evolution of the number
infected individuals can be thought of as a one-dimensio
random walk in thenI space, starting atnI51 and with an
absorbing boundary condition at the origin,nI50, where the
evolution terminates. Equivalently, we may think of a firs
passage-time problem, with respect to the origin, for a r
dom walker starting atnI51 @14#. This analogy, however, is
difficult to exploit, since in our case the random walk wou
be biased by a complex time-dependent asymmetry. In f
the probability fornI to grow or decrease depends not on
on nI itself, but also on the number of both susceptible a
refractory individuals. The effect of this bias would be pa
ticularly strong for the large-NR realizations withp.pc . In
this case, indeed, the evolution ofnI(t) does not resemble a
random trajectory but mimics deterministic dynamics
fected by a moderate level of noise@see Fig. 2~b!#.

The first-passage-time analogy suggests anyway th
compact quantitative characterization of the propagation p
cess is given by the total timeT elapsed up to the extinction
of the infected population, and the maximum number of
fected individuals during the evolution,NI . In the associated
random walk, these two quantities correspond to the fi
passage time and the maximum span from the origin, res
tively. In order to compare with our previous results, w
measureT andNI as a function of the final refractory popu
lation NR . Note thatNR is directly related to the duration o
the propagation process measured in evolution steps. In
since the final number of infected individuals is zero, ea
step where a susceptible individual becomes infected m
be compensated by a step where an infected individual
comes refractory. Since an extra step of this latter kind
needed for the first infected individual, the total number
steps necessary for the extinction of the infected popula
is exactly 2NR21. On the other hand, due to the changi
duration of steps in real time, Eq.~3!, the connection be-
tweenT andNR is more complex.

FIG. 2. Evolution of the numbernI(t) of infected individuals as
a function of time in two single realizations on a 105-node small-
world network withK52, for ~a! p50.05 and~b! p50.3.
8-3
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DAMIÁ N H. ZANETTE PHYSICAL REVIEW E65 041908
In Fig. 3, we present measurements of the total timeT as
a function ofNR over series of 104 realizations, for SWNs
with K52 and three different sizes, and for two values of t
randomnessp. For small p there is a quite well-defined
power-law dependence,T;NR

t , spanning almost two order
of magnitude inNR . Linear fitting of these data yields a
exponentt close to 2/3. This result differs from the valu
predicted by the random-walk analogy for an unbiased r
dom walk in thenI space, which givest51/2. On the other
hand, it can satisfactorily be reproduced by a random w
with constant bias, with probabilitiesP50.6 of moving to-
wards1` and 12P50.4 of moving in the opposite direc
tion. We recall, however, that the analogy would be strict
a time-dependent bias only. Forp.pc the above power-law
dependence is still observed in the small-NR regime, but ap-
parent deviations appears asNR grows. In particular, the de
tached ‘‘cloud’’ of dots observed forN5104 and 105 at large
values ofNR—which correspond to realizations in the bum
structure observed inf (NR) ~see Fig. 1!—does not satisfy
the power-law relation. The total evolution times associa
with such realizations are considerably below those predic
by an extrapolation from the small-NR region, and the differ-
ence becomes larger as the sizeN grows. Note moreover
from the inset in Fig. 3~b!, that inside the ‘‘cloud’’ there is no
obvious correlation betweenT andNR , in contrast with the
small-NR regime. These features make it evident that a qu
tative change in the dynamical behavior occurs between
regimes of small and largeNR , as illustrated in Fig. 2.

Essentially the same features are found for the dep

FIG. 3. Total timeT up to the extinction of the infected popu
lation, as a function of the final number of refractory individua
NR , for networks withK52 andN5103 ~triangles!, 104 ~squares!,
and 105 ~circles!. The randomness is~a! p50.05 and~b! p50.3.
Both T andNR were measured in 104 realizations for each value o
p. In the cases where several values ofT were obtained for the sam
value ofNR , they were averaged. The straight lines have a slop
2/3. The inset in~b! shows a close-up of the ‘‘cloud’’ at large value
of NR for N5104, in linear scales.
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dence of the maximum number of infected individuals d
ing the whole evolution,NI , on NR , shown in Fig. 4. Now,
however, the exponent in the power-law relationNI;NR

n ,
observed to hold in the small-NR regime, is close to 1/2
which does coincide with the result for an ordinary unbias
random walk. For largeNR , the ‘‘clouds’’ of dots quoted
above deviate in this case to higher values ofNI . A detail of
the ‘‘cloud’’ for N5105, shown in the inset of Fig. 4~b!,
reveals a remnant correlation betweenNI andNR .

Note that the power-law dependence ofT andNI on NR ,
implies the relationT;NI

m , with m5t/n'1/3. This relation
is expected to hold for small randomness or, more gener
for small NR .

Through the study of the evolution of the infected pop
lation, we have so far examined the dynamical properties
our model for just two values of the small-world randomne
p, below and above the localization-propagation transition
pc . It is now worthwhile to discuss how the results chan
asp is varied. For 0,p,pc , as a matter of fact, the power
law dependence ofT and NI on NR is not modified. The
exponentst andn are the same within our numerical prec
sion. On the contrary, above the transition, substan
changes affect the frequency distribution of the final refr
tory populationNR and its relation toT andNI .

In the first place, the relative number of realizations in t
small-NR regime and in the bump at largeNR varies consid-
erably withp. Figure 5 shows the fractionr of realizations in
the large-NR bump as a function ofp for three values ofN
and K52. This fraction grows fromr'0.35 for p50.3 to
r'0.7 for the maximum randomnessp51. As expected,

of

FIG. 4. Maximum number of infected individuals during th
evolution,NI , as a function of the final number of refractory ind
viduals,NR , for networks withK52 andN5103 ~triangles!, 104

~squares!, and 105 ~circles!. The randomness is~a! p50.05 and~b!
p50.3. Data were obtained from the same numerical realization
those of Fig. 3. The straight lines have a slope of 1/2. The inse
~b! shows a close-up of the ‘‘cloud’’ at large values ofNR for N
5104, in linear scale.
8-4
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DYNAMICS OF RUMOR PROPAGATION ON SMALL- . . . PHYSICAL REVIEW E 65 041908
realizations where the rumor attains a significant fraction
the population become more frequent as the network
domness grows. Note moreover that the dependence with
system sizeN is quite weak, but there is no clear indicatio
of saturation for largeN.

As for the dependence of the total evolution timeT and
the maximum number of infected individualsNI on the final
refractory populationNR , the small-NR regime exhibits no
significant modifications asp changes. The power-law de
pendence with the same exponents is maintained, as
pected from the fact that the realizations in this regime c
respond to propagation of the rumor over a limit
neighborhood of its origin. In contrast, the bump inf (NR)
varies in position and the corresponding values ofT andNI
change. In Fig. 6, we show the average values ofT andNI as
a function of the fractionr 5^NR&/N corresponding to real
izations in the bump for several values ofp. Roughly speak-
ing, each dot represents the centers of the ‘‘clouds’’ refer

FIG. 5. Fractionr of realizations in the bump at largeNR as a
function of the small-world randomnessp, for networks withK
52 andN5103 ~triangles!, 104 ~squares!, and 105 ~circles!. Data
obtained from series of 103 realizations for each value ofp.

FIG. 6. Average values of the total evolution timeT ~empty
symbols! and the maximum infected populationNI ~full symbols! in
the large-NR regime as functions of the average fraction of fin
refractory individuals,r 5^NR&/N, for networks withK52 andN
5103 ~triangles!, 104 ~squares!, and 105 ~circles!. Dashed lines
have been drawn as a guide to the eye. In each data set, the lef
and rightmost dots correspond top50.3 andp51, respectively.
From left to right, the randomness changes by steps of sizedp
50.1. ForN5104 and 105, the valuep50.35 is also included. Each
dot stands for an average over 103 realizations.
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to in connection with Figs. 3 and 4, now for varying random
ness. For fixedN, the final refractory populationNR grows
with p. For the largest systems, in fact,NR is practically
doubled asp varies from 0.3 to 1. We thus verify again th
propagation is more efficient for larger randomness. This
fect is enhanced by the fact that, at the same time, the m
mum infected populationNI increases and the total timeT
decreases. For large systems,T is reduced by a factor of 2
whereasNI grows by a factor of 5, approximately. In sum
mary, the process becomes simultaneously more effec
and more rapid. Note, finally, the strong saturation in t
values of r, T, and NI as the randomness approaches
maximump51.

Let us end this section by addressing the effects of cha
ing the average number of neighbors per node, given by
parameterK. As for the localization-propagation transition,
growth in the number of neighbors implies that the critic
randomnesspc decreases and that, for fixedp, the final frac-
tion of refractory individuals increases@10#. These two re-
sults agree with the expected fact that propagation is m
efficient for largerK. The same trend is observed in the p
rameters that characterize the evolution of the infected po
lation: while the total timeT decreases, the maximum num
ber of infected individualsNI grows. Our results forK52, in
any case, are not qualitatively changed when other value
K are considered.

IV. PROPAGATION ON DYNAMIC SMALL WORLDS

Dynamic small worlds~DSWs! have been introduced as
variant to SWNs in the frame of a model for activity prop
gation in a system of mobile automata@15#. Instead of con-
sidering a frozen disordered interaction network, DSWs
mit interactions between any two individuals occupying t
nodes of a regular lattice. In the case of a one-dimensio
array with periodic boundary conditions, at each interact
event, the partner of an infected individual is chosen w
probability 12p among its 2K nearest neighbors,K clock-
wise andK counterclockwise. With the complementary pro
ability p, the partner is chosen at random from the who
lattice. In this way, all the infected individuals have th
chance to interact with arbitrarily distant partners, but t
probability of distant interactions is controlled by the ‘‘ran
domness’’p. Since, as in SWNs, an infected individual
chosen at each time step, real time must be updated acc
ing to Eq.~3!.

The change from SWNs to DSWs, which conveys t
replacement of frozen disorder by a stochastic process
qualitatively similar to the introduction of the so-called a
nealed approximation in the study of disordered Boole
~Kauffman! networks @16#. A considerable advantage o
DSWs over SWNs regards the numerical implementati
which does not require the generation of a new lattice at e
realization—a highly time-consuming step in our speci
system. However, the main virtue of DSWs—shared with
annealed model for Kauffman networks—is that, in pri
ciple, they admit a simpler analytical treatment. In particul
the limit p51 should be exactly described, in asymptotica
large systems, by a mean-field-like approach.

l

ost
8-5



or
rit
tiv
a

a
re

f
fo

tio
re

o
l
an
e

on
ion

a
hi
gl
te

al
w
b

.
c

ion

we
hift

r

ns

th
s
an
le
e

by

-
-
Ns
can
,

e a
on-
pa-

ore
d as

-

e
on

DAMIÁ N H. ZANETTE PHYSICAL REVIEW E65 041908
We show in the following that the behavior of the rum
propagation model on a DSW bears remarkable simila
with the case of a SWN, though some significant quantita
differences are detected. Let us first of all point out that,
for the dependence of our model on the system sizeN and on
the average number of neighbors per individual, 2K, the fea-
tures described in the preceding section for SWNs are qu
tatively reproduced in DSWs. Consequently, we do not
peat the analysis for varyingN andK, and focus here on the
specific caseN5104, K52. The behavior for other values o
N and K can be inferred from this case and the results
SWNs.

It has already been advanced@10# that our model on a
DSW undergoes the same kind of localization-propaga
transition found on SWNs. This is illustrated in Fig. 7, whe
we show the final fraction of refractory individualsr
5^NR&/N as a function ofp, for N5104 and K52. The
critical point has considerably decreased, topc'0.06. Mean-
while, as expected, the fractionr approaches the solution t
Eq. ~1!, r * '0.796 asp→1. Note in fact that the origina
version of the model, discussed in Sec. II, is a kind of me
field approximation of the small-world case, which becom
exact forp51.

As for SWNs, the nature of the localization-propagati
transition in DSWs is revealed by the frequency distribut
of the final number of refractory individuals,f (NR). Figure 8
shows this distribution for three values ofp. For p50.02 we
find a rapidly decaying function which, as in the subcritic
regime on SWNs, results to be roughly exponential. In t
case, in fact, the contribution of distant interactions is ne
gible, so that no significant differences are to be expec
between DSWs and SWNs. Forp50.06, which approxi-
mately corresponds to the critical pointpc in DSWs, the
distribution is a power law over a substantial interv
f (NR);NR

2a . Remarkably, the exponent of this power la
coincides—up to the numerical precision—with that o
tained at the critical randomness in SWNs,a'1.5 ~cf. Sec.
II !. Finally, above the critical point (p50.1), we find that the
by now familiar bump structure at largeNR has developed
The strong similarity with the scenario on SWNs convin

FIG. 7. Final fraction of refractory individuals,r 5^NR&/N, as a
function of the ‘‘randomness’’p on a dynamic small world with
total populationN5104 andK52. Each dot stands for an averag
over 104 realizations. The dashed line is a spline approximati
drawn as a guide to the eye.
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ingly suggests that the origin of the localization-propagat
transition is the same for both systems.

The inset of Fig. 8 shows the fractionr of realizations
that contribute to the bump, as a function ofp. Comparing
with Fig. 5, which shows the same results for SWNs,
note that—apart from the obvious consequences of the s
of pc to the left—the fractionr attains considerably large
values. In particular, we findr'1 for 0.6&p. For such val-
ues ofp, therefore, the rumor propagates to distant regio
and attains a finite portion of the system in virtuallyall re-
alizations. An important contribution to this difference wi
SWNs is given by the following fact. In our SWNs, link
between individuals are bidirectional. This implies that if
infected individual i transmits the rumor to a susceptib
neighborj, there is a relatively high probability that, in th
future, the now infected individualj will ~unsuccessfully!
attempt to transmit the rumor toi and will become refractory.
These unsuccessful trials for backward propagation are
far more improbable in DSWs, especially for largep, and the
rumor spreading is consequently enhanced.

For p,pc the total evolution timeT and the maximum
number of infected individualsNI satisfy the same power
law dependence ofNR as in SWNs. In fact, as far as long
range interactions remain infrequent, the evolution on SW
and DSWs is essentially equivalent. The same argument
be extended forp.pc in small-NR realizations. In this case
however, the exponentt in the relationT;NR

t results to be
smaller than for SWNs; now, we findt'0.57. The moderate
contribution of distant contacts is here enough to produc
considerable decrease of the total evolution time. Since c
tacts between any two individuals are now possible, pro
gation on DSWs is faster.

The fact that propagation on DSWs is faster and m
effective than in SWNs becomes dramatically emphasize
soon as the large-NR regime is analyzed. Figure 9 showsT
andNI as functions ofNR for large ‘‘randomness,’’ ranging
from p50.5 to 0.9. These plots show the ‘‘clouds’’ corre

,

FIG. 8. Normalized frequency distributionf (NR) of the final
number of refractory individualsNR on a dynamic small world with
a total populationN5104 and K52, for p50.02 ~empty dots!, p
50.06 ~crosses!, andp50.1 ~full dots!. The frequency distribution
was obtained from series of 106 realizations for each ‘‘random-
ness.’’ The dashed straight line has a slope of21.5. The inset
shows the fractionr of realizations belonging to the large-NR bump
as a function ofp, averaged over 103 realizations.
8-6
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sponding to the large-NR bump structure, and are, therefor
analogous to the inserts of Figs. 3~b! and 4~b!. The typical
values ofNR , T, andNI in these DSW realizations are to b
compared with the corresponding values for SWNs, sho
in Fig. 6. While, forN5104, the fractionr 5^NR&/N attains
in SWNs a maximum average level of about 0.44 forp51,
in DSWs r reaches a typical value close to 0.8 forp50.9.
The differences inT andNI are even more drastic. In SWN
their extreme average values areT'75 and NI'440,
whereas in DSWs they change toT'25 andNI'3000.

As the ‘‘randomness’’ of DSWs approaches its maximu
valuep51, the system should be satisfactorily described
a mean-field approximation. The analytical treatment of
model within such approximation is developed in the Appe
dix. There we show that, for a given sizeN, it is possible to
predict the values ofNI , NR , and a lower bound forT.
These values are compared with numerical results in Fig
The agreement with the average of numerical results is v
good for the largest ‘‘randomness,’’p50.9. These results
however, show considerable fluctuations with respect to
values predicted by the mean-field approximation. Moreo
fluctuations inNR , T, and NI are closely correlated. Not
that the same kind of correlations were suggested in SW
by the results shown in the insets of Figs. 3~b! and 4~b!.
Since, as discussed above, DSWs can be more efficie
implemented in numerical experiments, our results in Fig
correspond to a number of realizations considerably lar
than for SWNs, and such correlations become apparent.

It turns out that the correlations between the values oT,

FIG. 9. ~a! The total evolution timeT and ~b! the maximum
number of infected individualsNI , as functions of the final refrac
tory populationNR , on a DSW with N5104 and K52, for p
50.5 ~empty dots!, p50.7 ~crosses!, and p50.9 ~full dots!. Only
the large-NR region, corresponding to the bump structure, is show
Data were extracted from 105 realizations for each value ofp. In the
cases where several values ofT andNI were obtained for the sam
value of NR , they were averaged. Square symbols stand for
values ofNI andNR , and the lower bound forT predicted by the
mean-field approximation. The curves correspond to these s
values for varyingN.
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NI , andNR obtained in single realizations can be explain
in terms of the mean-field approximation. In fact, calculati
NI andNR , and the lower bound forT from this approxima-
tion for differentvalues of the system sizeN—ranging from
N'9200 to 10 300—we obtain the values shown in Fig. 9
curves. These values successfully reproduce the correla
between the three quantities. Specifically, asN increases,T
decreases slowly andNR grows, while—as shown in the
Appendix—NI and NR are linearly correlated. From a phe
nomenological viewpoint, these results can be interprete
if in each individual realization the system appears to ha
an ‘‘effective’’ size—close to, but different from, its actua
size—plausibly determined by variations in the effectiven
with which the rumor spreads over the population.

V. CONCLUSION

We have here studied the evolution of an epidemicl
model evolving on small-world geometries. The dynami
which can be interpreted as the spreading of a rumor
known to exhibit a transition between regimes of localizati
and propagation at a finite randomness of the underly
disordered geometry@10#. Epidemiological models on geom
etries that plausibly represent social networks and inform
tion webs—such as small-world and scale-free netwo
@17#—have recently attracted much attention, in view of th
potential role in the description of actual risk situations a
sociated with infectious diseases and computer viru
@9,18–21#.

In our model, the effectiveness of propagation is char
terized by the total numberNR of individuals that have been
infected during the whole evolution. Generally, in a sing
realization of the process on an asymptotically large sys
of sizeN, propagation affects either a vanishingly small fra
tion of the population,NR /N'0, or a finite fractionr. For a
randomnessp below the critical pointpc of the localization-
propagation transition, only the small-NR regime is observed
and the rumor remains localized within a limited neighbo
hood of its origin. Forp.pc , on the other hand, realization
in both regimes are observed. The fraction of realizations
the large-NR regime, in fact, grows as the randomne
increases.

The dynamics of our model is completely described
the evolution of the numbernI of infected individuals. A
compact characterization of this evolution is given by t
total timeT elapsed up to the extinction of the infected pop
lation, the maximum numberNI of infected individuals at a
given time, and the total numberNR of infected individuals
during the whole evolution. The effectiveness of propagat
increases whenT decreases, because spreading is faster,
when NR and NI grow, because the rumor reaches a larg
population.

Our results for small-world networks can be summariz
as follows. For any value ofp, the small-NR regime is char-
acterized by power-law correlations betweenT, NR , andNI .
It has been suggested that these correlation could be
plained in terms of a random-walk picture of the propagat
process in thenI space. A rigorous analogy, however, ca
only be achieved in terms of a biased random walk with
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rather complicated time-dependent bias. In the large-NR re-
gime, the values ofT, NR , andNI obtained in single realiza
tions are distributed around certain typical values, wh
vary as the network randomnessp changes. Specifically, asp
grows,T decreases and bothNR andNI increase, indicating
that the propagation process becomes increasingly effec
The three quantities show a quite marked saturation as
randomness approaches its limiting valuep51. The effec-
tiveness of propagation is also improved, as expected, w
the average number of neighbors per individual grows.

We have also studied these features in a so-called
namic small world. Instead of considering a frozen netwo
of interaction links, dynamic small worlds admit that dista
contacts can occur between any two individuals, chose
random at each evolution step. We have here shown tha
far as our model is concerned, propagation in a dyna
small world is qualitatively the same as on a small-wo
network. Namely, the same kind of correlations betweenT,
NR , and NI and the same dependence withp observed on
small-world networks are reproduced in dynamic sm
worlds. The main quantitative difference between both ca
is that in dynamic small worlds the effectiveness of prop
gation is considerably higher. Evolution times are over
shorter and infected populations larger than on small-wo
networks. In qualitative terms, this is plausibly due to t
fact that, in dynamic small worlds, the average number
interaction partners per individual is very large and the eff
of backpropagation is comparatively negligible, especially
large populations.

To our knowledge, this is the first time that the evoluti
of a dynamical process is compared in detail on small-wo
networks and in dynamic small worlds. It may be conje
tured that our main conclusions regarding this compari
will hold for a large class of processes. A systematic co
parison would in fact be desirable since, though small-wo
networks have attracted considerably more attention than
namic small worlds, the latter have the advantage of ea
analytical and numerical treatment and, moreover, provid
more realistic model of social systems with mobile individ
als.
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APPENDIX: MEAN-FIELD APPROXIMATION

A mean-field-like approximation for the model of rumo
propagation described in Sec. II can be formulated assum
that each interaction event may occur with the same pr
ability between any pair of individuals, i.e., neglecting t
effects of spatial structure in the population. The frequen
of such an event is, therefore, proportional to the produc
the interacting populations. DenotingnS(t), nI(t), and
nR(t), the susceptible, infected, and refractory populatio
respectively, the mean-field evolution of our model is giv
by the equations
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ṅS52nS

nI

N
, ~A1!

ṅI5nS

nI

N
2nI

nI1nR

N
, ~A2!

and

ṅR5nI

nI1nR

N
. ~A3!

As expected, these equations imply thatnS(t)1nI(t)
1nR(t)5N is independent of time. Taking into account th
conservation rule, the evolution equations can be implic
solved in terms of the auxiliary variable

s5E
0

t

nI~ t8!dt8. ~A4!

We point out that the introduction of the variables in this
continuous approximation is fully equivalent to the chan
from the real time scale to the measure of time in evolut
steps used in the discrete model.

With the initial conditionsnS(0)5N21, nI(0)51, and
nR(0)50, the solutions to Eqs.~A1! to ~A3! are

nS~s!5~N21!exp~2s/N!, ~A5!

nI~s!512s12~N21!@12exp~2s/N!#, ~A6!

and

nR~s!5s2~N21!@12exp~2s/N!#, ~A7!

respectively. From these solutions, some relevant quant
can be immediately calculated. The total number of stepS
needed for the extinction of the infected population is t
positive solution tonI50. This leads to the transcendent
equation

S2152~N21!@12exp~2S/N!#, ~A8!

which, for each value ofN, can be accurately solved b
numerical means. For asymptotically largeN, it can be
shown thatS5kN, wherek'1.594 is the positive solution to
k52@12exp(2k)# @note thatk52r * ; cf. Eq. ~1!#. The final
number of refractory individuals,NR , can be evaluated from
Eq. ~A7! for s5S, i.e., at the end of the evolution. Thi
yields

NR5
S11

2
. ~A9!

Actually, this result holds not only in the mean-field approx
mation, but for any value ofp and N in both SWNs and
DSWs, as discussed in the main text.

The stepsI at which the infected populationnI(t) attains
its maximum NI is given by ṅI50, i.e., sI5N ln@2(N
21)/N#. Replacing in Eq.~A6! we obtain the maximum num
ber of infected individuals,
8-8
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NI5N212N ln
2~N21!

N
'~12 ln 2!N, ~A10!

where the right-hand side approximation holds for largeN. In
this limit, combination of the above results makes it possi
to show that

NI'
2~12 ln 2!

k
NR'0.385NR . ~A11!

The only problematic point in the comparison of th
mean-field approximation with the original discrete mode
et

-

na

04190
e

the evaluation of the total~real! time T elapsed up to the
extinction of the infected population. As a matter of fact,
the mean-field approximationnI(t) decreases asymptoticall
and vanishes only fort→` ~note that, however, this limit
corresponds to a finite total number of stepsS). The total
time T must, therefore, result from a plausible definition u
ing the mean-field results. In the main text we use the f
lowing criterion. We defineT as the time needed fornI(t) to
attain again its original valuenI51. In other words,T is the
nontrivial solution tonI(t)51, which can be accurately ob
tained from numerical integration of Eqs.~A1!–~A3!. This
gives a lower bound for the actual total evolution time, th
can be directly compared with our numerical results.
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