PHYSICAL REVIEW E, VOLUME 65, 041908
Dynamics of rumor propagation on small-world networks
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We study the dynamics of an epidemiclike model for the spread of a rumor on a small-world network. It has
been shown that this model exhibits a transition between regimes of localization and propagation at a finite
value of the network randomness. Here, by numerical means, we perform a quantitative characterization of the
evolution in the two regimes. The variant of dynamic small worlds, where the quenched disorder of small-
world networks is replaced by randomly changing connections between individuals, is also analyzed in detail
and compared with a mean-field approximation.
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I. INTRODUCTION work, a critical transition between both regimes occurs at
p.=0 [7,8]. Similar transitions at the same critical point are

The networks that underlie real social interactions, whosdound for some simple dynamical processes on SWNs, such
nodes represent single individuals and whose links conne@s for Ising-like spin system$] and ensembles of coupled
individuals that are expected to interact, vary with time andoscillators. In contrast, it has been recently shown that other
strongly depend on the kind of interactions involved. Generkinds of processes display a transition between qualitatively
ally, however, social networks exhibit two specific topologi- different dynamical regimes at finite values of the random-
cal properties that are closely related to the nature of socidless. Specifically, in an epidemiological model where an ini-
interactions. First, they are highly clustered, which meandially susceptible individual infected by contagion undergoes
that two randomly chosen neighbors of a given individuala disease cycle that returns to the susceptible state, a transi-
have a relatively large probability of being in turn mutual tion at finite p occurs between a regime where the disease
neighbors. Second, the distance between any two nodes fiycles of different individuals are temporally uncorrected
the network, measured as the number of links of the minima(low p) to a regime where the cycles synchronipégh p)
path connecting the two nodes, is on the average very smd®]. Moreover, in an epidemiclike model for rumor propaga-
as compared with the total number of nodes or links. This idion a quantitatively similar transition has been found be-
the so-called small-world effect. Small-world networks tween a regime where the rumor remains localided p)
(SWNs constitute a mathematical model for social networksto a regime where it spreads over a finite fraction of the
that captures these two propert[@3. They are partially dis- network (high p) [10].
ordered networks, interpolating between regular lattices and The critical-phenomenon nature of the transition found in
fully random graphs. In factN-node regular lattices with the model of rumor propagation has been convincingly
connections beyond nearest neighbors have high clusteringroven by means of finite-size scaling analygl®)]. This
but the average distance between nodes is of d¥dén the  paper, on the other hand, focuses on a detailed characteriza-
other hand, the average distance in random networks is dfon of the dynamical properties of the same model, with
order InN<N, but the probability that two neighbors of a emphasis on the effects introduced by the small-world topol-
given node are mutual neighbors is of ordér®. For mod-  ogy. In the following section we introduce the model and
erate disorder, SWNs preserve the two desirable properties immarize the main results on the critical transition between
ordered and random network&-5], and are, therefore, a the regimes of localization and propagation. The core of the
convenient tool for the mathematical study of social pro-paper, Secs. Ill and 1V, is devoted to establishing the connec-
cesseg6]. tion between the several parameters of our model and suit-

Small-world networks are built starting from an orderedable quantities that characterize its evolution. This is done
lattice with moderately high connectivity, which insures high both in quenched small-world networks and in the so-called
clustering. Then, each link is removed with probabifitand ~ dynamic small worlds, where quenched disorder in the inter-
reconnected between two randomly selected nodes. This pra@ction links is replaced by stochastic choice of the interaction
cess creates a shortcut between two otherwise distant regiopgrtners. We emphasize similarities and differences between
of the network. The probabilitypy measures the degree of both cases. Finally, we summarize and discuss the main re-
disorder orrandomnes®f the resulting graph. Fqp=0 or-  sults.
der is fully preserved, while fop=1 a random graph is
obtained. Note, however, that the average connectivity is
constant.

Topological properties of SWNs, such as the average dis- Consider a population formed by individuals where, at
tance between nodes, display a crossover from the behavieach time step, each individual adopts one of three possible
observed in regular lattices to that of random graphs at atates. In the first state, the individual has not heard the ru-
randomnesp~N~1. In the limit of an infinitely large net- mor yet. In the second state, the individual is aware of the

Il. MODEL OF RUMOR PROPAGATION
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rumor and is willing to transmit it. Finally, in the third state, 10"k a

the individual has heard the rumor but has lost the interest in

itt, and does not transmit it. By analogy with SIR 107

(susceptible-infected-refractgry epidemiological models ~ 107 "o

[11], these three states are, respectively, called susceptible, = °aag§g

infected, and refractory. At the beginning, only one indi- = 107% eaﬂzaug

vidual is infected and all the remnant population is suscep- - L

tible. The dynamical rules act as follo&2]. At each time 10 S

step, an individual is chosen at random from the infected 0 25 50 75 100 125 150

population. This individual contacts one of her neighbors, 4 b

sayj. If j is in the susceptible statetransmits the rumor and 10

j becomes infected. If, on the other hapd; already infected A‘z10'3-

or refractory, then loses her interest in the rumor and be- 5< 0t :

comes refractory. . £
In qualitative terms, the dynamics can be summarized as 10°F : P8

follows. In the first stage of the evolution, the number of 10°% R

infected individuals increases and, at a lower rate, the refrac- ” s 1300 10600“

tory population grows as well. As a consequence, the con- N,

tacts of infected individuals between themselves and with

refractory individuals become more frequent. Eventually, the FIG. 1. Normalized frequency distributidifNg) of the number
infected population begins to decline and vanishes, and thef refractory individuals at the end of the evolutioNg, for K
evolution stops. At the end, the population is divided into a=2 and two values of the small-world randomnéssp=0.05 and
group of N refractory individuals, who have been infected (P) P=0.3. Different symbols correspond b= 10° (triangles, N
at some stage during the evolution, and a group of s,uscep:-,104 (squarey andN= 10" (circles. Frequency counts were ob-
tible individuals who have never heard the rumor. It has beeffinéd from series of forealizations for each parameter set.
shown[13] that, in the case where contacts can be estab- . . .
lished between any two individuals in the population, thepopulatlon becomes aware of the rumor, which remains lo-

fractionr =(Ng)/N of refractory individuals at the end of the callzdec; n i Sn:ﬁ” nelghborholod 0]]: Its or|g|;11. On the ?th?r
evolution—averaged over a large number of realizations Opan » 10rp =P the average value olapproaches a constan

the system—approaches a well-defined limiit for asymp- asN grows. Finite-size scaling analysis in the specific case of

totically large systemdN— . This fraction is given by the K=2 shows that, for asymptotically large systems,
nontrivial solution to the transcendental equation r~|p—pd” 2)

r*=1—exp —2r*), (1)  with p.~0.19 andy~2.2. For larger values &, the critical
randomnesg. decreases. The exponeptin contrast, seems
i.e.,r*~0.796. In other words, some 20% of the populationto be universal.
never becomes aware of the rumor. A clue to the origin of the localization-propagation tran-
We are here interested in the case where contacts betwesiiion is provided by the distributio(Ng) of values ofNg
individuals are established along the links imposed by a soever large series of realizations of our system for fixeg,
cially plausible structure, namely, a small-world network. Asand N. Figure 1 shows those distributions f&r=2, two
advanced in the Introduction, SWNs are built starting fromvalues ofp—below and above the transition—and three val-
an ordered lattice, with one individual at each node. Weues ofN. At each realization, the SWN is constructed anew,
choose a one-dimensional array with periodic boundary conand the initially infected individual is randomly chosen from
ditions, where each node is connected to it§ Bearest the whole population. Fop<p. the distribution is approxi-
neighbors, i.e., to thé& nearest neighbors clockwise and mately exponential, and does not depend Mn Conse-
counterclockwise. Then each of theclockwise connections quently, the average valudNg) is also independent of the
of each nodé is rewired with probabilityp to a randomly  system size and, as advanced above, the ratidNg)/N
chosen nodg, not belonging to the neighborhood af A decreases as grows. More specifically, ~N~* for largeN.
shortcut is thus created. We avoid double and multiple linkdn a typical realization fop<p. the rumor remains localized
between node, and discard realizations where the SWN bealue to the high interconnectivity of the network at the local
comes disconnected. level and the scarce density of shortcuts. Transmission oc-
Previous analysis of this system, focused on the charaeurs between a small group of individuals that rapidly lose
terization of its final state, has revealed that a critical transitheir interest in the rumor, and propagation to distant regions
tion between two well-differentiated regimes occurs at a fi-is highly improbable.
nite valuep. of the randomnesgL0]. For p<p., the final In contrast, the distribution fop>p. is bimodal, with
numberNg of refractory individuals, when averaged over two maxima separated by a local minimum. The sngl-
many realizations of the system, is independent of the popuegime is still independent dfl and attains a maximum near
lation size. Therefore, ad— o, the ratior =(Ng)/N tends  Ng=0. On the other hand, for large valueshf, we find an
to vanish. In such limit, only an infinitesimal fraction of the additional bumplike structure, which changes with the sys-
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tem size. Specifically, the position of its maximuR{™
shifts rightward asN grows, asNg¥*~0.25N. Since, mean-
while, the area under the bump remains almost constant, this
additional structure produces a contribution of orNdp the
average valuéNg). Consequently; is finite above the tran-
sition. While in a realization belonging to the smaillk re-
gime the rumor remains localized as in the caspdfp.., a
typical realization contributing to the bump includes propa-
gation through several shortcuts, thus attaining distant re-
gions in the system.

For p~p., the distribution(not shown in Fig. 1exhibits
power-law dependence for moderate valuesNaf, f(Ng)
~Ng“ with a~1.5. The power-law regime terminates at a
smooth cutoff, whose position shifts to the right as the sys-
tem size increases, approximatelyN$® [10].

The localization-propagation transition of our model has
been described in terms of static features, namely, the final
refractory populatioNg, measured when all the interaction
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events have ceased. In the following section, we focus on our
central interest here and study the dynamics of the propaga- FIG. 2. Evolution of the numben,(t) of infected individuals as
tion process. a function of time in two single realizations on a*lfode small-
world network withK=2, for (a) p=0.05 and(b) p=0.3.
Ill. EVOLUTION OF THE INFECTED POPULATION dom walk. As a matter of fact, the evolution of the number of
A complete characterization of the propagation process imnfected individuals can be thought of as a one-dimensional
our model is given by the evolution of the infected popula-random walk in then, space, starting at;=1 and with an
tion. Initially, all the population is susceptible, except for anabsorbing boundary condition at the origm=0, where the
infected individual. Then, at each evolution step, either theevolution terminates. Equivalently, we may think of a first-
number of infected individualg, increases ta,+1 at the passage-time problem, with respect to the origin, for a ran-
expense of the susceptible population nprdecreases to, dom walker starting at, =1 [14]. This analogy, however, is
—1 and the refractory population grows accordingly. There-difficult to exploit, since in our case the random walk would
fore, the evolution of the number of both susceptible andoe biased by a complex time-dependent asymmetry. In fact,
refractory individuals is implicit in the evolution af,. In  the probability forn, to grow or decrease depends not only
order to given, as a function of time, it must be taken into on n; itself, but also on the number of both susceptible and
account that the number of infected individuals varies andrefractory individuals. The effect of this bias would be par-
consequently, the real-time duratiéih of an evolution step ticularly strong for the larg&y realizations withp>p,. In
changes. Since at each step an infected individual is choséhis case, indeed, the evolution 0f(t) does not resemble a
at random, St must be proportional to the probability of random trajectory but mimics deterministic dynamics af-
choosing that individual, i.e., to the frequency of such eventfected by a moderate level of noifgee Fig. 20)].
sten, . Therefore, time is to be updated according to The first-passage-time analogy suggests anyway that a
compact quantitative characterization of the propagation pro-
cess is given by the total timeelapsed up to the extinction
of the infected population, and the maximum number of in-
fected individuals during the evolutiol, . In the associated
where the constartt, fixes time units. We choosg=1, so  random walk, these two quantities correspond to the first-
that the unit of time can be associated with the typical timgpassage time and the maximum span from the origin, respec-
needed by a single infected individual to establish a contadively. In order to compare with our previous results, we
with one of her neighbors. measurel andN,; as a function of the final refractory popu-
Figure 2 shows the evolution of the number of infectedlation Ng. Note thatNg is directly related to the duration of
individuals as a function of time for two single realizations the propagation process measured in evolution steps. In fact,
with N=10° andK =2, for two values of the network ran- since the final number of infected individuals is zero, each
domnessp=0.05 and 0.3. Fop=0.05 the final number of step where a susceptible individual becomes infected must
refractory individuals isNg=32, while forp=0.3 we have be compensated by a step where an infected individual be-
Ngr=22,258. This latter realization belongs to the laMjg- comes refractory. Since an extra step of this latter kind is
bump structure inf(Ng) for the corresponding value ¢f.  needed for the first infected individual, the total number of
Realizations for the same randomness but in the siall- steps necessary for the extinction of the infected population
region are qualitatively similar to that shown in FigaR is exactly Ng— 1. On the other hand, due to the changing
The graph o, as a function of time for smafp—or, for  duration of steps in real time, E@3), the connection be-
p>pc, in the region of smalNg—is reminiscent of a ran- tweenT andNg is more complex.

fots 0 3
- n(t)’ @
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FIG. 3. Total timeT up to the extinction of the infected popu- g1, 4. Maximum number of infected individuals during the

lation, as a function of the final number of refractory individuals evolution, N, , as a function of the final number of refractory indi-
Ng, for networks withk =2 andN=10° (triangles, 10° (squarel \iqyals, Ng, for networks withk =2 andN=10C® (triangles, 10*

and 10 (circles. The randomness i) p=0.05 and(b) p=0.3.  (square) and 16 (circles. The randomness i) p=0.05 and(b)
Both T andN were measured in f0ealizations for each value of p=0.3. Data were obtained from the same numerical realizations as

p. In the cases where several valueg ofere obtained for the same y,nse of Fig. 3. The straight lines have a slope of 1/2. The inset in

value ofNg, they were averaged. The straight lines have a slope Ofb) shows a close-up of the “cloud” at large values N for N
2/3. The inset inb) shows a close-up of the “cloud” at large values _ 10%. in linear scale.

of Ng for N=10% in linear scales.
dence of the maximum number of infected individuals dur-
In Fig. 3, we present measurements of the total tires  ing the whole evolutionN,, on Ng, shown in Fig. 4. Now,
a function ofNg over series of 1brealizations, for SWNs however, the exponent in the power-law relatip~ N,
with K=2 and three different sizes, and for two values of theobserved to hold in the smailg regime, is close to 1/2,
randomnessp. For small p there is a quite well-defined which does coincide with the result for an ordinary unbiased
power-law dependenc&,~Ng, spanning almost two orders random walk. For largeNg, the “clouds” of dots quoted
of magnitude inNg. Linear fitting of these data yields an above deviate in this case to higher valuedNpf A detail of
exponentr close to 2/3. This result differs from the value the “cloud” for N=10°, shown in the inset of Fig. (),
predicted by the random-walk analogy for an unbiased ranreveals a remnant correlation betweénandNg.
dom walk in then, space, which gives=1/2. On the other Note that the power-law dependenceTo&ndN, on Ng,
hand, it can satisfactorily be reproduced by a random walkmplies the relatioil ~N{*, with u= 7/v~1/3. This relation
with constant bias, with probabilitieB=0.6 of moving to- is expected to hold for small randomness or, more generally,
wards+o and 1- P=0.4 of moving in the opposite direc- for small Ng.
tion. We recall, however, that the analogy would be strict for Through the study of the evolution of the infected popu-
a time-dependent bias only. Fpep, the above power-law lation, we have so far examined the dynamical properties of
dependence is still observed in the snidl{-regime, but ap- our model for just two values of the small-world randomness
parent deviations appears ldg grows. In particular, the de- p, below and above the localization-propagation transition at
tached “cloud” of dots observed fai=10* and 1§ at large  p,. It is now worthwhile to discuss how the results change
values ofNg—which correspond to realizations in the bump asp is varied. For 6<p<p., as a matter of fact, the power-
structure observed ifi(Ng) (see Fig. J—does not satisfy law dependence of and N, on Ng is not modified. The
the power-law relation. The total evolution times associate@&xponentsr and v are the same within our numerical preci-
with such realizations are considerably below those predictedion. On the contrary, above the transition, substantial
by an extrapolation from the smallg region, and the differ- changes affect the frequency distribution of the final refrac-
ence becomes larger as the siegrows. Note moreover, tory populationNg and its relation tol andN; .
from the inset in Fig. @), that inside the “cloud” there is no In the first place, the relative number of realizations in the
obvious correlation betweeh andNg, in contrast with the smallNg regime and in the bump at largéy varies consid-
smallNg regime. These features make it evident that a qualierably withp. Figure 5 shows the fractiom of realizations in
tative change in the dynamical behavior occurs between thehe largeNg bump as a function op for three values oN
regimes of small and largdg, as illustrated in Fig. 2. andK=2. This fraction grows fronp~0.35 forp=0.3 to
Essentially the same features are found for the deperp~0.7 for the maximum randomnegs=1. As expected,
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0.8 to in connection with Figs. 3 and 4, now for varying random-
o o ness. For fixed\, the final refractory populatiohy grows
0.7 o § 2 o . . . .
. B with p. For the largest systems, in fadliz is practically
0.6 8 doubled a9 varies from 0.3 to 1. We thus verify again that
a propagation is more efficient for larger randomness. This ef-
p 0.51 o & fect is enhanced by the fact that, at the same time, the maxi-
0.4 mum infected populatiofN,; increases and the total tine
- decreases. For large systenisis reduced by a factor of 2
031 - whereasN, grows by a factor of 5, approximately. In sum-
02 - mary, the process becomes simultaneously more effective
02 03 04 05 06 07 08 09 10 and more rapid. Note, finally, the strong saturation in the
p values ofr, T, and N, as the randomness approaches its
FIG. 5. Fractionp of realizations in the bump at largég as a maximump= 1'_ . .
function of the smgll-world randomnegs for nztworkgd\!;ith K . Let us end this section by a_ddressmg the eﬁeCt_S of chang-
=2 andN=1C" (triangles, 10 (squarel and 16 (circles. Data N9 the average number of neighbors per node, given by the
obtained from series of £0ealizations for each value qf parameteK. As for the localization-propagation transition, a

growth in the number of neighbors implies that the critical

lizati h h . anifi fracti {andomneswC decreases and that, for fixgdthe final frac-
realizations where the rumor attains a significant fraction of; - refractory individuals increasd40]. These two re-

the population become more frequent as the network rans,its agree with the expected fact that propagation is more

domness_grov_vs. Note moreover that the depende_nce_ W'.th Nficient for largerK. The same trend is observed in the pa-

system sizeN is quite weak, but there is no clear indication \, eters that characterize the evolution of the infected popu-

of saturation for large\. . . lation: while the total timerl decreases, the maximum num-
As for the dependence of the total evolution tii@nd o ¢ infected individual®l, grows. Our results foK =2, in

the maimum ”“”.‘ber of infected |nd|V|du_al\\5 on the. final any case, are not qualitatively changed when other values of
refractory populatiorNg, the smallNg regime exhibits no K are considered

significant modifications ap changes. The power-law de-
pendence with the same exponents is maintained, as ex-

pected from the fact that the realizations in this regime cor- IV. PROPAGATION ON DYNAMIC SMALL WORLDS
respond to propagation of the rumor over a limited
neighborhood of its origin. In contrast, the bumpfifNg)
varies in position and the corresponding valued @nd N,
change. In Fig. 6, we show the average value§ ahdN, as

Dynamic small world§DSWs9 have been introduced as a
variant to SWNs in the frame of a model for activity propa-
gation in a system of mobile automdtb]. Instead of con-
sidering a frozen disordered interaction network, DSWs ad-

a function of the fractiom =(Ng)/N corresponding to real- =~ .~ . L :

N . mit interactions between any two individuals occupying the

izations in the bump for several valuespfRoughly speak- ; . .
nodes of a regular lattice. In the case of a one-dimensional

ing, each dot represents the centers of the “clouds referre%rray with periodic boundary conditions, at each interaction

event, the partner of an infected individual is chosen with
10000 probability 1—p among its X nearest neighbors clock-
o wise andK counterclockwise. With the complementary prob-
I ability p, the partner is chosen at random from the whole
lattice. In this way, all the infected individuals have the
- i chance to interact with arbitrarily distant partners, but the
probability of distant interactions is controlled by the “ran-
domness”p. Since, as in SWNs, an infected individual is
chosen at each time step, real time must be updated accord-
ing to Eq.(3).
The change from SWNs to DSWSs, which conveys the
024 028 032 036 040 044 replacement of frozen disorder by a stochastic process, is
r qualitatively similar to the introduction of the so-called an-
FIG. 6. Average values of the total evolution tirfe(empty nealed approximation in the SIUdy of disordered Boolean
symbol3 and the maximum infected populatioh (full symbolg in ~ (K@uffman networks [16]. A considerable advantage of
the largeNg, regime as functions of the average fraction of final D°SWS over SWNs regards the numerical implementation,
refractory individualsy =(Ng)/N, for networks withK=2 andN which does not require the generation of a new lattice at each
—10® (triangles, 10* (squares and 16 (circles. Dashed lines ealization—a highly time-consuming step in our specific
have been drawn as a guide to the eye. In each data set, the leftm&tstem. However, the main virtue of DSWs—shared with the
and rightmost dots correspond =0.3 andp=1, respectively. annealed model for Kauffman networks—is that, in prin-
From left to right, the randomness changes by steps of &jze ciple, they admit a simpler analytical treatment. In particular,
=0.1. ForN=10* and 18, the valugp=0.35 is also included. Each the limit p=1 should be exactly described, in asymptotically
dot stands for an average over*I@alizations. large systems, by a mean-field-like approach.

100+
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FIG. 7. Final fraction of refractory individuals=(Ng)/N, as a
function of the “randomness’ on a dynamic small world with
total populationN=10* andK =2. Each dot stands for an average
over 1¢ realizations. The dashed line is a spline approximation,
drawn as a guide to the eye.

FIG. 8. Normalized frequency distributiof(Ng) of the final
number of refractory individuallsiz on a dynamic small world with
a total populatiorN=10* andK=2, for p=0.02 (empty dot$, p
=0.06 (crossey andp=0.1 (full dots). The frequency distribution
was obtained from series of 4Gealizations for each “random-
ness.” The dashed straight line has a slope—of.5. The inset
We show in the following that the behavior of the rumor shows the fractiop of realizations belonging to the lardé; bump
propagation model on a DSW bears remarkable similarityas a function ofp, averaged over forealizations.
with the case of a SWN, though some significant quantitative
differences are detected. Let us first of all pOint out that, a$ng|y Suggests that the Origin of the |0ca|izati0n_propagation
for the dependence of our model on the systemNiz&d on  transition is the same for both systems.
the average number of neighbors per individu#, Zhe fea- The inset of Fig. 8 shows the fractign of realizations
tures described in the preceding section for SWNs are qualihat contribute to the bump, as a function pfComparing
tatively reproduced in DSWs. Consequently, we do not rewith Fig. 5, which shows the same results for SWNs, we
peat the analysis for varying andK, and focus here on the note that—apart from the obvious consequences of the shift
specific casé\=10%, K=2. The behavior for other values of of p, to the left—the fractiorp attains considerably larger
N andK can be inferred from this case and the results forvalues. In particular, we find~1 for 0.6<p. For such val-
SWNSs. ues ofp, therefore, the rumor propagates to distant regions
It has already been advancgtl0] that our model on a and attains a finite portion of the system in virtuady re-
DSW undergoes the same kind of localization-propagatioralizations. An important contribution to this difference with
transition found on SWNs. This is illustrated in Fig. 7, where SWNs is given by the following fact. In our SWNs, links
we show the final fraction of refractory individuals  between individuals are bidirectional. This implies that if an
=(Ng)/N as a function ofp, for N=10* and K=2. The infected individuali transmits the rumor to a susceptible
critical point has considerably decreasedpte-0.06. Mean-  neighborj, there is a relatively high probability that, in the
while, as expected, the fractionapproaches the solution to future, the now infected individugl will (unsuccessfully
Eqg. (1), r*~0.796 asp—1. Note in fact that the original attempt to transmit the rumor t@and will become refractory.
version of the model, discussed in Sec. Il, is a kind of meanThese unsuccessful trials for backward propagation are by
field approximation of the small-world case, which becomedar more improbable in DSWs, especially for laggeand the
exact forp=1. rumor spreading is consequently enhanced.
As for SWNs, the nature of the localization-propagation For p<p. the total evolution timel and the maximum
transition in DSWs is revealed by the frequency distributionnumber of infected individual®\, satisfy the same power-
of the final number of refractory individual§(Ng). Figure 8  law dependence dflz as in SWNSs. In fact, as far as long-
shows this distribution for three valuesmfFor p=0.02 we  range interactions remain infrequent, the evolution on SWNs
find a rapidly decaying function which, as in the subcriticaland DSWs is essentially equivalent. The same argument can
regime on SWNSs, results to be roughly exponential. In thishe extended fop>p. in smallNy realizations. In this case,
case, in fact, the contribution of distant interactions is negli-however, the exponentin the relationT~N§ results to be
gible, so that no significant differences are to be expectedmaller than for SWNs: now, we finek-0.57. The moderate
between DSWs and SWNs. F@r=0.06, which approxi- contribution of distant contacts is here enough to produce a
mately corresponds to the critical poipt in DSWSs, the considerable decrease of the total evolution time. Since con-
distribution is a power law over a substantial interval,tacts between any two individuals are now possible, propa-
f(Ngr)~Ngr“. Remarkably, the exponent of this power law gation on DSWs is faster.
coincides—up to the numerical precision—with that ob- The fact that propagation on DSWs is faster and more
tained at the critical randomness in SWNss 1.5 (cf. Sec.  effective than in SWNs becomes dramatically emphasized as
II). Finally, above the critical pointa=0.1), we find that the soon as the larghlg regime is analyzed. Figure 9 shows
by now familiar bump structure at lardégz has developed. andN,; as functions ofNg for large “randomness,” ranging
The strong similarity with the scenario on SWNs convinc-from p=0.5 to 0.9. These plots show the “clouds” corre-
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32 o N,, andNg obtained in single realizations can be explained
in terms of the mean-field approximation. In fact, calculating
N, andNg, and the lower bound fof from this approxima-
tion for differentvalues of the system siaé—ranging from
N~9200 to 10 300—we obtain the values shown in Fig. 9 as
curves. These values successfully reproduce the correlation
between the three quantities. Specifically,Nagncreases;T
decreases slowly anbllz grows, while—as shown in the
Appendix—N, and Ny are linearly correlated. From a phe-
nomenological viewpoint, these results can be interpreted as
if in each individual realization the system appears to have
an “effective” size—close to, but different from, its actual
size—plausibly determined by variations in the effectiveness
with which the rumor spreads over the population.

V. CONCLUSION

7400 76IOO 78|00 SOIOO 8200

Ny We have here studied the evolution of an epidemiclike
model evolving on small-world geometries. The dynamics,
which can be interpreted as the spreading of a rumor, is
known to exhibit a transition between regimes of localization
and propagation at a finite randomness of the underlying
disordered geometfyl0]. Epidemiological models on geom-
etries that plausibly represent social networks and informa-
tion webs—such as small-world and scale-free networks
value of Ng, they were averaged. Square symbols stand for tha 17}—have recently attracted much attention, in view of their
values ofN, andN, and the lower bound foF predicted by the Potential role in the description of actual risk situations as-
mean-field approximation. The curves correspond to these samgPciated with infectious diseases and computer viruses
values for varying\. [9,18-21.

In our model, the effectiveness of propagation is charac-
sponding to the larg&ks bump structure, and are, therefore, terized by the total numbé\y of individuals that have been
analogous to the inserts of Figsh® and 4b). The typical infected during the whole evolution. Generally, in a single
values ofNg, T, andN, in these DSW realizations are to be realization of the process on an asymptotically large system
compared with the corresponding values for SWNs, showf sizeN, propagation affects either a vanishingly small frac-
in Fig. 6. While, forN=10%, the fractionr =(Ng)/N attains  tion of the populationNg/N~0, or a finite fractiorr. For a
in SWNs a maximum average level of about 0.44 ffer 1, randomnesg below the critical poinp,. of the localization-
in DSWsr reaches a typical value close to 0.8 fo=0.9.  propagation transition, only the sm&lk regime is observed,
The differences im andN, are even more drastic. In SWNs, and the rumor remains localized within a limited neighbor-
their extreme average values afe~75 and N,~440, hood of its origin. Fop>p., on the other hand, realizations
whereas in DSWs they change Te=25 andN,~3000. in both regimes are observed. The fraction of realizations in

As the “randomness” of DSWs approaches its maximumthe largeNg regime, in fact, grows as the randomness
valuep=1, the system should be satisfactorily described byincreases.
a mean-field approximation. The analytical treatment of our The dynamics of our model is completely described by
model within such approximation is developed in the Appenthe evolution of the numben, of infected individuals. A
dix. There we show that, for a given sikg it is possible to compact characterization of this evolution is given by the
predict the values oN,, Nr, and a lower bound foif.  total timeT elapsed up to the extinction of the infected popu-
These values are compared with numerical results in Fig. dation, the maximum numbeN, of infected individuals at a
The agreement with the average of numerical results is vergiven time, and the total numbéty of infected individuals
good for the largest “randomnessg=0.9. These results, during the whole evolution. The effectiveness of propagation
however, show considerable fluctuations with respect to thécreases wheil decreases, because spreading is faster, and
values predicted by the mean-field approximation. Moreoveryvhen Ng and N, grow, because the rumor reaches a larger
fluctuations inNg, T, and N, are closely correlated. Note population.
that the same kind of correlations were suggested in SWNs Our results for small-world networks can be summarized
by the results shown in the insets of Figgb)3and 4b).  as follows. For any value gf, the smallNg regime is char-
Since, as discussed above, DSWs can be more efficientcterized by power-law correlations betwegmg, andN; .
implemented in numerical experiments, our results in Fig. 9t has been suggested that these correlation could be ex-
correspond to a number of realizations considerably largeplained in terms of a random-walk picture of the propagation
than for SWNs, and such correlations become apparent. process in then, space. A rigorous analogy, however, can

It turns out that the correlations between the value$,of only be achieved in terms of a biased random walk with a

FIG. 9. (a) The total evolution timeT and (b) the maximum
number of infected individualbl, , as functions of the final refrac-
tory populationNg, on a DSW withN=10" and K=2, for p
=0.5 (empty dot$, p=0.7 (crosses and p=0.9 (full dots). Only
the largeNg region, corresponding to the bump structure, is shown.
Data were extracted from %@ealizations for each value of In the
cases where several valuesTtodndN, were obtained for the same
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rather complicated time-dependent bias. In the |agere- . n,

gime, the values of, Ng, andN, obtained in single realiza- Ns=~Nsy (A1)

tions are distributed around certain typical values, which

vary as the network randomngsshanges. Specifically, as _ n, N+ Nk

grows, T decreases and botlz and N, increase, indicating n= nSN—nI N

that the propagation process becomes increasingly effective.

The three quantities show a quite marked saturation as thgnd

randomness approaches its limiting valie 1. The effec-

tiveness of propagation is also improved, as expected, when . N, +ng

the average number of neighbors per individual grows. Ng=n, N (A3)
We have also studied these features in a so-called dy-

namic small world. Instead of considering a frozen networkas expected, these equations imply thag(t)+n,(t)

of interaction links, dynamic small worlds admit that distant  n_(t)= N is independent of time. Taking into account this

contacts can occur between any two individuals, chosen &lonservation rule, the evolution equations can be implicitly
random at each evolution step. We have here shown that, ag)ved in terms of the auxiliary variable

far as our model is concerned, propagation in a dynamic

small world is qualitatively the same as on a small-world to

network. Namely, the same kind of correlations betw@en s= fom(t )dt’. (A4)
Ng, andN,; and the same dependence wilobserved on

small-world networks are reproduced in dynamic smallwe point out that the introduction of the variatden this
W0r|dS. The main quantitative diﬁerence betWeen bOth Caseéontinuous approximation iS fu”y equiva'ent to the Change

is that in dynamic small worlds the effectiveness of propafrom the real time scale to the measure of time in evolution
gation is considerably higher. Evolution times are overallsteps used in the discrete model.

shorter and infected populations larger than on small-world  \jith the initial conditionsng(0)=N—1, n,(0)=1, and

networks. In qualitative terms, this is plausibly due to thep_(0)=0, the solutions to Eq¢Al) to (A3) are
fact that, in dynamic small worlds, the average number of

(A2)

interaction partners per individual is very large and the effect ng(s)=(N—1)exp(—s/N), (A5)
of backpropagation is comparatively negligible, especially, in
large populations. n(s)=1—s+2(N—1)[1—exp —s/N)], (AB)

To our knowledge, this is the first time that the evolution
of a dynamical process is compared in detail on small-worlcand
networks and in dynamic small worlds. It may be conjec-
tured that our main conclusions regarding this comparison
will hold for a large class of processes. A systematic com-
parison would in fact be desir.able since, though s_mall-worl an be immediately calculated. The total number of s@&ps
networks have attracted considerably more attention than q3ﬁeeded for the extinction of the infected population is the

hamic small worlds, Fhe latter have the advantage of €asi€lositive solution ton,=0. This leads to the transcendental
analytical and numerical treatment and, moreover, provide quation

more realistic model of social systems with mobile individu-
als. S—1=2(N-1)[1—exp —S/N)], (A8)

Ng(s)=s—(N—-1)[1—exp —s/N)], (A7)

espectively. From these solutions, some relevant quantities

which, for each value oN, can be accurately solved by
ACKNOWLEDGMENTS numerical means. For asymptotically lar@¢ it can be
shown thatS=kN, wherek~1.594 is the positive solution to
k=2[1—exp(—Kk)] [note thatk=2r*; cf. Eq. (1)]. The final
number of refractory individuald\g, can be evaluated from
Eq. (A7) for s=S, i.e., at the end of the evolution. This
yields

Fruitful discussion with G. Abramson, M. Kuperman, and
L. G. Morelli is gratefully acknowledged.

APPENDIX: MEAN-FIELD APPROXIMATION

A mean-field-like approximation for the model of rumor N :S+1 (A9)
propagation described in Sec. Il can be formulated assuming R™ 2
that each interaction event may occur with the same prob-
ability between any pair of individuals, i.e., neglecting the Actually, this result holds not only in the mean-field approxi-
effects of spatial structure in the population. The frequencymation, but for any value op and N in both SWNs and
of such an event is, therefore, proportional to the product oPSWSs, as discussed in the main text.
the interacting populations. Denotings(t), n,(t), and The steps at which the infected populatiom (t) attains
ng(t), the susceptible, infected, and refractory populationsijts maximum N, is given by n,=0, i.e., s=NIn[2(N
respectively, the mean-field evolution of our model is given—1)/N]. Replacing in Eq(A6) we obtain the maximum num-
by the equations ber of infected individuals,
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2(N—1) the evaluation of the totalrea) time T elapsed up to the
N ~(1-In2)N, (A10) extinction of the infected population. As a matter of fact, in
the mean-field approximatiom (t) decreases asymptotically
and vanishes only fot—o (note that, however, this limit
corresponds to a finite total number of steg)s The total
GimeT must, therefore, result from a plausible definition us-
ing the mean-field results. In the main text we use the fol-
lowing criterion. We defind as the time needed far,(t) to
Ng~0.38Ng. (A1) attain again its original value,=1. In other wordsT is the
k nontrivial solution ton;(t)=1, which can be accurately ob-
tained from numerical integration of Eq6A1)—(A3). This
The only problematic point in the comparison of the gives a lower bound for the actual total evolution time, that
mean-field approximation with the original discrete model iscan be directly compared with our numerical results.

N,=N—1—NIn

where the right-hand side approximation holds for laxgén
this limit, combination of the above results makes it possibl
to show that

2(1-In2)
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