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Surnames and non-recombining alleles are inherited from a single parent in a highly similar
way. A simple birth–death model with mutations can accurately describe this process.
Exponentially growing and constant populations are investigated, and we study how
different compositions of the founder populations can be observed in present-day diversity
distributions. We analyse different quantities in the statistically stationary state,
both through analytic and numerical methods. Our results compare favourably to field
data for family sizes in several countries. We discuss the relationship between the dis-
tribution of surnames and the genetic diversity of a population.r 2002 Elsevier Science Ltd.
All rights reserved.
1. Introduction

Biological and cultural features of human
populations have been traditionally studied by
separate disciplines, but the parallelisms between
biological and cultural evolution have been put
forward by a number of researchers. Already
Darwin (1871) pointed out that ‘‘the formation
of different languages and of distinct species
and the proofs that both have been devel-
oped through a gradual process are curiously
parallel’’.
Cultural traits are transmitted from ancestors

to their descendence, in a process analogous to
inheritance, and are subject to changes, similar
to mutations, by interaction between indivi-
dualsFsuch as teaching and imitation. More-
over, they usually fulfill a practical purpose,
*Corresponding author. Tel.: +34-91-5202-089; fax: +34-
91-520-1074
E-mail address: susanna@complex.upc.es (S.C. Manrubia).

0022-5193/02/$35.00/0
which amounts to being subject to selection.
In fact, they enhance the relationships within
human groups, defining social entities compar-
able to certain biological species and popula-
tions. The quantification of cultural traits has
been attempted only recently. For example,
Cavalli-Sforza et al. (1982) applied concepts
from the quantitative theory of biological
evolution to construct a theory of cultural
evolution. They analysed 40 traits, ranging from
political preferences to superstitions. Many of
these traits are subject to high mutability, since
they are influenced by fashion, individual
acquaintances, and personal experience, and
one does not expect their quantitative properties
to be directly comparable to those of any
biological feature. Other traits, on the other
hand, are better preserved. Among them we find
languages and surnames. Language is essential
to integrate the individual to society; surnames
are historicalFthough recentFsigns of identity
r 2002 Elsevier Science Ltd. All rights reserved.
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Fig. 1. Scaling behaviour of the fraction pðnÞ of species
represented by n individuals (triangles), of surnames borne
by n persons (squares), and of languages with n speakers
(circles). Data for the distribution of species abundance are
from Poore (1968), corresponding to trees in a Malaysian
rainforest [see also Sol!e and Alonso (1998)]. Data for
surnames (beginning by A) are from the 1996 Berlin
telephone book. Data for languages are from http://
www.sil.org/ethnologue/preface.html. As a guide to
the eye we draw lines with slope �2 (solid line) and �3=2
(dotted lines). Data sets have been mutually shifted for
better visualization.
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in social groups. Quite early, Galton & Watson
(1874) dealt with the problem of the extinction of
surnames. This problem is equivalent to that of
the extinction of a mutant allele in a population,
although this relation was only established half a
century later (Fisher, 1922; Haldane, 1927),
when the first quantitative approaches to biolo-
gical evolutionary processes took place.
Comparative methods analogous to biological

taxonomy are used to determine the degree of
similarity between languages. This method
returns the genetic classification of linguistic
diversity (see for example Greenberg, 1992;
Ruhlen, 1992). Recently, a quantitative study
of the taxonomy of languages has been carried
out (Zanette, 2001), showing that the distribu-
tion of the number of subtaxa within a taxa
displays scaling properties, quantitatively similar
to those disclosed in biological taxonomy by
Burlando (1990, 1993). That is, if n is the number
of subtaxa belonging to a given taxaFsay, the
number of languages in the Indo-European
family, or the number of species in the genus
CanisFthe fraction pðnÞ of taxa that have
precisely n subtaxa scales as pðnÞBn�b: The
exponent is found in the interval 1pbp2 in both
cases. This gives quantitative support to Dar-
win’s observation on the ‘‘equivalence’’ between
the mechanisms behind biological and linguistic
evolution. A complementary comparison is that
of linguistic abundance, measured as the number
of individuals speaking a language, with the
number of individuals of a biological species.
Again, the frequency as a function of the number
of individuals has scaling properties both for
languages (Gomes et al., 1999) and for species
(Pielou, 1969), see Fig. 1.
Surnames are cultural traits (Cavalli-Sforza &

Feldman, 1981) whose transmission bears strong
similarity with that of some biological features.
They are inherited from one of the parents,
usually the father, much in the same way as the
Y-chromosome or the mitochondrial DNA. The
extinction of a surname and the persistence of a
non-recombining neutral allele are equivalent
problems. This is not only a mathematical fact,
but has also practical implications. Indeed, to
assess the multiple or single origin of a surname
one can turn to genetic measures, since males
sharing the same surname might also share the
same haplotype in the non-recombining segment
of the Y chromosome (Sykes & Irven, 2000). In a
very large population, the statistical properties of
the surname distribution can be strongly corre-
lated with genetic diversity (Barrai et al., 1996),
and may even be used to understand the genetic
structure of a population (Yasuda et al., 1974).
Recent reports on actual populations (Miyazima
et al., 2000; Zanette & Manrubia, 2001) show that
the distribution of surnames follows the same
statistical law observed for languages and biolo-
gical species. Namely, if n is the number of
individuals bearing a given surname, the fraction
pðnÞ of surnames decreases with n as pðnÞBn�g

(see Fig. 1). Here, however, the exponent is always
gE2: This paper focuses on a model aimed at
predicting this kind of regularities, observed in
disparate human populations.

2. Theoretical Approaches to Surname Evolution

At the mathematical level, several models have
been proposed and analysed in order to
identify quantitative properties of surnames



ORIGIN OF SURNAME DISTRIBUTIONS 463
evolutionFor, equivalently, those of non-
recombining neutral alleles. The main points
addressed by these studies are (i) the probability
of fixation of a given surname/allele in a closed
population (Galton & Watson, 1874; Fisher,
1922; Haldane, 1927; Moran, 1962; Lange, 1981;
Rannala 1997; Hull 1998), and (ii) the distribu-
tion of the number of individuals bearing the
same surname/allele (Kimura & Crow, 1964;
Karlin & McGregor, 1967; Fox & Lasker, 1983;
Panaretos, 1989; Gale 1990; Consul, 1991; Islam,
1995; Zanette & Manrubia, 2001). Indeed, these
two questions cover complementary aspects of
the same problem. In (i), one deals with a closed
population (no immigrants enter the system),
and implicitly assumes that the mutation rate is
low enough, such that fixation can indeed occur
before a mutant form appears. Suppose that
there are N individuals in the population. We
know from coalescence theory that the time ng
(in units of the number of generations) required
for a neutral allele to be fixed is of order ngBN :
Now suppose that the mutation rate per genera-
tion and per individual is r: Then M � rngN is
the average number of mutants after ng genera-
tions have elapsed. Only if M51; that is if
r5N�2; will the fixation of the allele be possible.
As soon as this inequality is violated, a new
situation arises, in which both neutral drift and
mutation play relevant roles. In this case, a
broad distribution of surnames or of genetic
diversity is expected. Actually, the value of r will
be usually fixed by the nature of the problem,
while the size N of the considered population can
increase enough such that N241=r: Therefore,
the statistical behaviour crosses over to the
second regime, where the appearance of mutants
cannot be discarded. We are then in the
assumptions of the models of class (ii).
All the models in class (ii) represent systems

where statistical equilibrium is reached. While
the neutral drift drives the less-frequent sur-
names out of the system, mutations generate
new surnames. For large times, the number of
different surnames in the system is much larger
than unity. Yasuda and co-workers (Yasuda
et al., 1974) used a stochastic model for a
population with a fixed number of individuals.
At each evolution step, a new individual with the
surname of his father is added, but he acquires
a new surname with a given probability. In any
case, a randomly chosen individual is eliminated
in order to keep the population constant. Their
analytical results compared successfully to field
data despite the restriction of constant popula-
tion, which forces the elimination of individuals.
In this model, the size of the progeny is Poisson
distributed.
Other models start with a single individual

in the population and new individuals carrying
the same surname or a new one are sequentially
added (Panaretos, 1989; Consul, 1991; Islam,
1995). These fall in the category of branching
processes (Harris, 1963) with an increasing
number of individuals in the population. Panar-
etos (1989) rephrased a model introduced by
Simon (1955) in the context of linguistics, as
follows. At each step, an individual is chosen to
be the father of a newborn and his surname is
transmitted with probability 1� a: With the
complementary probability a; the newborn is
assigned a surname not present in the popula-
tion. Recently, we have modified Simon’s model
by (i) introducing an additional parameter m
which represents the death rate of the individuals
in the population, and (ii) allowing for arbitrary
initial conditions. Preliminary results have been
successfully compared with large data sets
(Zanette & Manrubia, 2001). This is the starting
point of the present work, where we present
new analytical and numerical results for this
birth–death model.
We describe the model in the next section,

where our analytical results are derived. Questions
like the role played by the composition of the
founder population and by death events in an
exponentially growing population are addressed.
We also analyse a system with constant popula-
tion, which turns out to quantitatively differ from
the previous case. In Section 4 we numerically
check our analytical results and run computer
simulations of the model in situations not amen-
able to an analytical description. In Section 5 our
results are tested against field data. We finish with
an overall discussion in the last section.

3. Birth–Death Model for Surname Evolution

Our model population evolves in discrete
steps, each step corresponding to the birth of a
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new individual. At each time step, moreover, an
individual is chosen at random from the whole
population and becomes removed with prob-
ability m; representing a death event. The total
population at step s; P ðsÞ; is therefore a
stochastic process governed by the evolution
equation

P ðsþ 1Þ ¼ P ðsÞ þ 1� wðsÞ; ð1Þ

where wðsÞ is the dichotomic stochastic process

wðsÞ ¼
1 with probability m;

0 with probability 1� m:

(
ð2Þ

We show in Appendix A that, averaging over
realizations of the stochastic process wðsÞ; the
average total population %P grows exponentially
in time:

%PðtÞ ¼ P0 exp½nð1� mÞt	: ð3Þ

Here, n is the birth rate per individual and unit
time, and the product nm turns out to be the
corresponding death rate; P0 is the initial
population.
We think of the population as divided into

groupsFthe familiesFwithin which all indivi-
duals bear the same surname. At each birth
event, the newborn is assigned a new surname,
not previously present in the population, with
probability a: This probability can be seen as a
mutation rate for surnames, but could also
be interpreted as a measure of migration to-
wards the population of individuals with new
surnames. With the complementary probability,
1� a; a pre-existent individual is chosen at
random from the population and becomes the
newborn’s father, i.e. his surname is given to the
newborn. Surnames are therefore assigned with
probabilities proportional to the size of the
corresponding families, allowing, however, for
fluctuations inherent to the random distribution
of births among families. Consequently, the
distribution of surnames is driven by a stochastic
multiplicative process (Van Kampen, 1981),
modulated in turn by the total population
growth. This process is analogous to the
mechanism proposed by Simon (1955) to model
the frequency distribution of words and city
sizes, described by Zipf’s law (Zipf, 1949),
among other instances. Our model, in fact,
reduces to Simon’s model if mortality is
neglected, i.e. for m ¼ 0: Note that allowing for
death events adds a relevant process in the case
of surnames, namely, the possibility that a
surname disappears if it is borne by a single
individual and the individual dies.
Since neither the probability of becoming

father of a newborn nor the death probability
depend on the individual’s age, the present
model population can be thought of as ageless.
As a consequence, if n and m are constant, the
probability that an individual dies at an age
between T and T þ dT is

dpðT Þ ¼ nm expð�nmT Þ dT ; ð4Þ

which implies a life expectancy %T ¼ 1=nm:More-
over, the probability that an individual has
exactly m children with the same family name
during its whole life equals

pðmÞ ¼ ð1� aÞm½1þ ð1� aÞm	�m�1; ð5Þ

giving a fertility %m ¼ 1=ð1� aÞm: The exponen-
tial distribution in eqn (5) is in reasonable
agreement with actual data collected over
relatively short periods, for instance, for the
United States (Hull, 1998), but contrasts with
the Poissonian distribution found in data in-
tegrated over several centuries, as in the case of
England (Dewdney, 1986). This discrepancy can
presumably be ascribed to long-range variations
of real birth and death rates (see Fig. 2).
We are assuming that an individual’s surname

is inherited from the father. Consequently, the
modelFas presented aboveFdescribes the evo-
lution of the male population only. The same
evolution rules apply however if it is assumed
that surnames are transmitted with the same
probability by either parent. In this case, there is
no sex distinction and the model encompasses
the whole population. The real situation is in
fact intermediate between these two limiting
cases: whereas some societies strongly favour
inheritance of the surname either from the father
or from the mother, other groups allow for a
choice between the two possibilities. In some
developed western countries, where the surname
is preferentially transmitted by the father, opting
for the mother’s surname has been proposed as a
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Fig. 2. Probability distribution of the number of
children per male in two different populations. Open dots
correspond to an average during the period 1350–1986 in
England (Dewdney, 1986). The solid line joining the data
points is actually a fitting with a Poisson distribution,
P ðnÞ ¼ expð�lÞln=n! with average /nS ¼ l ¼ 1:15: Solid
dots are data from the 1920 American census [from Hull
(1998); originally compiled by Lotka (1931)]. The solid line
fitting the first part of the data is an exponential
distribution, P ðnÞpexpð�0:3nÞ:
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method to avoid the persistent extinction of
surnames, due to the extremely slow population
growth (Legay & Vernay, 1999).

3.1. DISTRIBUTION OF FAMILIES BY SIZE.

THE CASE OF m ¼ 0

As stated above, our model reduces to Simon’s
model (Simon, 1955) for m ¼ 0: In this case,
wðsÞ ¼ 0 for all s and the total population
evolves deterministically, P ðsÞ ¼ P0 þ s; since
exactly one individual is added to the population
at each step. The number of families with exactly
i individuals at step s; niðsÞ; grows to niðsÞ þ 1
when an individual is added to a family of size
i� 1: This occurs with probability ð1� aÞði�
1Þ=P ðsÞ: On the average, thus, the number of
families with i individuals varies according to

%niðsþ 1Þ ¼ %niðsÞ þ
1� a
P ðsÞ

½ði� 1Þ %ni�1ðsÞ � i %niðsÞ	

ð6Þ

for i > 1: To the families with only one indivi-
dual, on the other hand, the positive contribu-
tion comes from the creation of new surnames
with probability a: Therefore,

%n1ðsþ 1Þ ¼ %n1ðsÞ þ a�
1� a
P ðsÞ

%n1ðsÞ: ð7Þ

Note that, since for m ¼ 0 the stochastic
process wðsÞ becomes trivial, overlines indicate
here average over realizations of the stochastic
process by which each newborn’s surname is
chosen.
The system of eqns (6) and (7) can be

completely solved for arbitrary initial condi-
tions. In fact, eqn (7) is an autonomous equation
for %n1ðsÞ; whose solution reads

%n1ðsÞ ¼
a

2� a
ðP0 þ sÞ þ n1ð0Þ �

a
2� a

P0
� �

GðP0ÞGðP0 þ s� 1þ aÞ
GðP0 þ sÞGðP0 � 1þ aÞ

;

ð8Þ

where GðzÞ is the gamma function (Abramowitz
& Stegun, 1970). Then, eqn (6) can be used to
recursively obtain %niðsÞ for i > 1: For long times,
s-N; %n1ðsÞ is essentially given by the first term
on the right-hand side of eqn (8), which grows
linearly with s; as the total population. The
second term, which contains all the informa-
tion about the initial condition, can be seen to
decrease as s�ð1�aÞ: In this limit, the recursion
from eqn (6) can be immediately solved. Thus,
for s-N; we find

%niðsÞ ¼
a

2� a
GðiÞGð1=ð1� aÞ þ 2Þ
Gðð1=ð1� aÞÞ þ 1þ iÞ

ðP0 þ sÞ: ð9Þ

The asymptotic number of families of a given
size i turns out to be proportional to the total
population. For fixed s and sufficiently large
values of i; %niðsÞ decreases as a power law,
%nipi�z; with

z ¼ 1þ
1

1� a
: ð10Þ

In the limit of small mutation rate, aE0; we have
zE2: As advanced in Section 1, this is the value
observed in actual surname distributions. This
same result was obtained by Simon (1955) for a
special initial condition. Elsewhere (Zanette &
Manrubia, 2001) we have already discussed
the fact that, though the effects of the initial
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condition in Simon’s model fade out for long
times, transients can strongly depend on the
initial distribution nið0Þ (see also Section 4). In
our case, this aspect could be relevant in
populations where modern surnames have ap-
peared recently, like the Japanese (Miyazima
et al., 2000). We shall return to this specific point
later.
Equations (6) and (7) imply that, in average,

the total number of surnames in the population
grows linearly

%NðsÞ ¼
XN
i¼1

%niðsÞ ¼ N0 þ as ð11Þ

with N0 the initial number of different surnames.
As a function of time, the number of surnames
increases exponentially:

%NðtÞ ¼ N0 þ aP0½expðntÞ � 1	: ð12Þ

We have already pointed out that, in contrast,
the number of surnames in some real popula-
tions at present times is decreasing (Cavalli-
Sforza & Feldman, 1981; Legay & Vernay,
1999). Under suitable conditions, adding
mortality allows to reproduce this particular
behaviour.

3.2. EFFECT OF DEATH EVENTS

Under the action of mortality, the growth of
the total population P ðsÞ fluctuates stochasti-
cally, according to eqn (1), depending on the
occurrence of death events at each evolution
step. The evolution of %niðsÞ can be implemented
in two substeps, as follows. First, eqns (6)
and (7) are used to calculate the intermediate
values

%n
0
iðsÞ ¼ %niðsÞ þ

1� a
P ðsÞ

ði� 1Þ %ni�1ðsÞ � i %niðsÞ½ 	 ð13Þ

and

%n
0
1ðsÞ ¼ %n1ðsÞ þ a�

1� a
P ðsÞ

%n1ðsÞ ð14Þ

and the population is updated to P 0ðsÞ ¼ P ðsÞ þ 1:
Second, the evolution due to mortality is
applied. In terms of the random process wðsÞ of
eqn (2), we have

%niðsþ 1Þ ¼ %n
0
iðsÞ þ

wðsÞ
P 0ðsÞ

� �
ðiþ 1Þ %n0iþ1ðsÞ � i %n0

iðsÞ
� �

ð15Þ

and P ðsþ 1Þ ¼ P 0ðsÞ � wðsÞ [cf. eqn (1)].
Naive replacement of the stochastic process

wðsÞ by its average value, wðsÞ-m; in order to
obtain a deterministic approximation to the
problem, would lead to an equation for which
positive solutions cannot be insured. In fact, it
is possible to give initial conditions for such
deterministic equation which lead to negative
values of %niðsÞ at sufficiently large s and i: A
satisfactory deterministic approximation can
however be proposed by assuming that the
solution %niðsÞ varies slowly both in s and i: This
assumption is generically verified for large
populations with smooth initial conditions. In
this situation, eqns (13) and (15) admit a con-
tinuous approximation in terms of real variables
z and y; which replace the integer variables s and
i; respectively. Meanwhile, %niðsÞ is replaced by a
continuous function nðy; zÞ:
The continuous approximation can be ana-

lyzed at different truncation orders, as discussed
in Appendix B. At the first order, the approx-
imate solution to eqns (13) and(15) reads

nðy; zÞ ¼ a
P0 þ ð1� mÞz
1� a� m

y�1�ð1�mÞ=ð1�a�mÞ ð16Þ

for yoyT ðzÞ; and

nðy; zÞ ¼ y�1
T nðy=yT ðzÞ; 0Þ ð17Þ

for y > yT ðzÞ; with

yT ðzÞ ¼ 1þ
1� m
P0

z
	 
ð1�a�mÞ=ð1�mÞ

: ð18Þ

In this first-order continuous approximation,
thus, the average number of families nðy; zÞ
exhibits two separated regimes. For large values
of the size variable, y > yT ðzÞ; the distribution is
essentially determined by the initial condition.
At the first evolution steps, where z-0 and
yT-1; this regime covers practically all the
domain of variable y: As time elapses and yT
grows, however, this regime recedes and is
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replaced for yoyT by a power-law distribution,
npy�z; with

z ¼ 1þ
1� m

1� a� m
: ð19Þ

Note that, as the exponent z in eqn (10), this new
exponent coincides with the observed value,
zE2; in the relevant limit aE0: This result is
independent of the death probability m: For
sufficiently long times, the power-law regime
will be observed for all the relevant family sizes.
All the contribution of the initial condition will
become restricted to the domain of the largest
families.
The boundary yT ðzÞ between the two regimes,

eqn (18), grows as a power of the ratio between
the average current population P0 þ ð1� mÞz and
the initial population P0: For aE0; the exponent
is practically equal to unity. Consequently, for
the boundary to reach a given value y0; in such
a way that all the families with sizes below y0 are
in the power-law regime, the total population
must grow by a factor practically equal to y0:
Taking into account eqn (3), the position of the
boundary as a function of real time reads

yT ðtÞ ¼ exp½nð1� a� mÞt	: ð20Þ

The transient t0 needed for the power-law regime
to develop up to a given size y0 is therefore
logarithmic, t0p ln y0:
The average total number of surnames in the

continuous approximation is calculated by ana-
logy with eqn (11):

%NðzÞ ¼
Z

N

1

nðy; zÞ dy: ð21Þ

Using the above first-order solution for nðy; zÞ;
we find %NðzÞ ¼ N0 þ az or, as a function of
time,

%NðtÞ ¼ N0 þ
aP0
1� m

fexp½nð1� mÞt	 � 1g; ð22Þ

as shown in Appendix B [cf. eqn (12)]. In
consequence, within this approximation, the
surname diversity always grows exponentially.
We point out, however, that this conclusion is
valid for sufficiently smooth distributions and
for mo1� a; two necessary conditions for the
continuous approximation to apply to our
problem. It could therefore be argued that
having a decreasing number of surnames, as
found in some modern developed societies
(Cavalli-Sforza & Feldman, 1981; Legay &
Vernay, 1999), requires violation of the above
conditions. For instance, an initial condition
with sharp variations would violate the smooth-
ness condition during the first evolution stages.
A death probability mE1 would also threaten
the validity of the continuous approximation.
This is precisely the case of modern developed
societies, where the population growth rate is
practically vanishing and, as a matter of fact,
reaches occasionally negative valuesFa situa-
tion not described by the present model. In
Section 3.3 we treat the special case m ¼ 1 and
show that, in this limit, the total number of
surnames can in fact decrease.
Though the first-order continuous approxima-

tion gives a rather rough description of the
solution to our model, as a piecewise function
with a moving discontinuity, it provides a quite
clear qualitative picture of how the solution
behaves. The growth of the power-law regime as
the initial condition recedes is in good qualitative
agreement with the evolution observed in nu-
merical realizations of the model. A better
analytical approximation is obtained from the
second-order truncation. Second-order deriva-
tives would in fact introduce diffusive-like effects
in the variable y; with the consequent smoothing
of the discontinuities of the first-order approx-
imation. The second-order equation, however,
cannot be analytically solved for arbitrary initial
conditions. Nevertheless, it is possible to give an
asymptotic approximation for long times, as

nðy; zÞ ¼
aP ðzÞ

1� a� m
2
1� a� m
1� aþ m

	 
z�1

y�1U z� 1; 0; 2
1� a� m
1� aþ m

y
	 


;

ð23Þ

where U ða; b; xÞ is the Kummer’s function (see
Appendix B). With respect to the first-order
approximation, eqn (16), this solution predicts
a lower value of nðy; zÞ for small y: For larger
family sizes, however, it behaves as a power law,
nðy; zÞpy�z with exactly the same exponent as in
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eqn (19). The asymptotic behaviour for large y in
the power-law regime is therefore not modified.
It must be pointed out that, for small values of a;
the profile of nðy; zÞ given by eqn (23) results to
be quite independent of the death probability
over a considerable range of values of m: Only
for mE1� aE1; where the exponent z strongly
depends on m; does nðy; zÞ change sensibly as m
is varied. We take advantage of this feature in
Section 5, where the second-order approxima-
tion is compared with actual data of surname
distributions.

3.3. THE CASE OF CONSTANT POPULATION, m ¼ 1

As argued above, the limit m ¼ 1 is relevant to
the discussion of the evolution of surname
distributions in some modern developed socie-
ties. In fact, this limit corresponds to the case
where the population growth rate vanishes, a
situation which is closely approached, for
instance, in many European countries. In this
case, eqn (15) is again deterministic, with wðsÞ ¼
1 and P 0ðsÞ ¼ P0 þ 1: The total population at any
time is P ðsÞ ¼ P0:
The main difference between this case and

that of mo1 is that, now, the distribution
%niðsÞ becomes independent of time for asympto-
tically large times. This feature is in agree-
ment with the fact that the asymptotic distribu-
tion for mo1 is proportional to the total
population P ðsÞ: The asymptotic surname dis-
tribution %nN

i is given, for m ¼ 0; by the
recurrence equations
%n
N

iþ1 ¼
½ð2� aÞP0 � 2ið1� aÞ	i %nNi � ð1� aÞðP0 þ 1� iÞði� 1Þ %nN

i�1

ðiþ 1Þ½P0 � ð1� aÞðiþ 1Þ	
ð24Þ
for i > 1; and

%n
N

2 ¼
½ð2� aÞP0 � 2ð1� aÞ	 %nN1 � aP 20

2½P0 � 2ð1� aÞðiþ 1Þ	
: ð25Þ

Note that, since the total population is always
P0; we have %nNi ¼ 0 for i4P0; as no family can be
larger than P0:
The solution reveals two well-defined regimes,

depending on how the product aP0 compares
with unity. For aP041; the asymptotic distribu-
tion behaves as

%n
N

i E
aP0
i
ð1� aÞi�1 ð26Þ

for a vast range of family sizes. Departures from
this behaviour are found very close to i ¼ P0
only. For i4P0; in fact, the distribution must
vanish. We stress the remarkable difference
between the exponential stationary distribution
(26) and the long-time power-law solution
obtained for mo1: In this regime, the stationary
total number of surnames is

%N
NE

aP0
1� a

jln aj: ð27Þ

For aP0o1; on the other hand, the distribu-
tion behaves as a power law, %nN

i Bi�1; over
practically the whole range of family sizes. Note
that the exponent of this power law is in
agreement with eqn (16) in the limit m-1: For
iEP0; however, the distribution deviates from
the power law and exhibits a sharp peak. In the
limit a-0; the distribution becomes an isolated
peak at i ¼ P0; namely, %nNi ¼ 0 for ioP0
and %nN

i ¼ 1 for i ¼ P0: Therefore, the total
number of surnames is %N

N ¼ 1: This special
solution describes the well-known case of a
closed population with no surname mutations
where, by random drift, a single surname
survives for asymptotically large times (Cavalli-
Sforza & Feldman, 1981). Notice also that this
limit corresponds to the birth–death model
introduced by Moran (1962) to study probabil-
ities of fixation of alleles when generations
overlap.
We conclude that, for a given population P0;

the asymptotic number of surnames can be very
small if the mutation probability a is, in turn,
small enough. Consequently, in a steady popula-
tion with many surnames at the initial stage and
with a sufficiently low mutation probability, the
number of surnames will decrease towards the
stationary value as time elapses. Numerical
simulations, discussed in detail in the next
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section, show that for m just below unity and
small a; an initial transient where the number of
surnames decreases temporarily can be observed.
Since mo1; however, the population grows
steadily and, as a consequence of mutations, %N
will also increase in the long run. The situation
in modern developed societies is that the
population growth rate has been constantly
decreasing, to reach values around zero at
present times. Starting from a state with a
wealth of surnamesFdue to the combined
effect, a few centuries ago, of a high population
growth and the frequent appearance of new
surnamesFthese societies have now reached
a regime of almost stationary population where
the number of surnames decreases. This situa-
tion would be reverted if the growth rate could
be maintained above zero during substantial
periods. Presently, the only mechanism acting in
this direction seems to be immigration, which is
in addition an effective source of new surnames.

4. Numerical Results

In this section we present results of numerical
realizations of our model, in order to compare
with the analytical approximations presented in
Section 3.2, and to illustrate the behaviour within
the regimes where such approximations do not
hold. Emphasis is put on the role of the initial
conditions, the duration of transients, and the
evolution of the number of different surnames.
Also, we discuss actual surname distributions of
modern populations in the light of our results.

4.1. ROLE OF INITIAL CONDITIONS

First, it is worthwhile to illustrate how the
shape of the distribution %niðsÞ depends on the
initial condition nið0Þ (see also Zanette &
Manrubia, 2001). We focus the attention on
initial distributions of the form nið0Þ ¼ N0 for i ¼
i0; and nið0Þ ¼ 0 for iai0; in which there are N0
families of equal size formed by i0 individuals
each. Consequently, the initial population is P0 ¼
i0N0: In the following, we denote such an initial
condition by the pair ði0;N0Þ: Figure 3 shows four
normalized distributions of family sizes

piðsÞ ¼
%niðsÞP
i %niðsÞ

ð28Þ
obtained both from the numerical realization of
the stochastic birth–death model and from the
iterative solution of the deterministic eqns (6) and
(7), for m ¼ 0: We find a very good agreement
between both methods and, at the same time,
clearly realize the relevant role of
the initial condition in determining the profile of
the distribution for large family sizes. These same
features are found for other values of the death
probability.
The solution of the first-order approximation

to our model, eqns (16)–(18), predicts that in the
zone of small family sizesFi.e. for yoyT in the
continuous variablesFthe only dependence on
the initial condition appears through the quan-
tity P0: This means that the distribution of family
sizes is not sensitive to a variation of i0 and N0 as
far as their product is kept constant. Note that
the three cases ð4; 5Þ; ð1; 20Þ; and ð20; 1Þ of Fig. 3
share the same value of P0 ¼ 20: For the
parameters of the figure, the crossover between
the regions of small and large family sizes, given
for the continuous variables by eqn (18), should
occur at iTE470: Though two of the distribu-
tions indeed have the same profileFwith the
expected power-law decayFup to that value,
the distribution corresponding to the initial
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condition ð1; 20Þ deviates considerably below iT :
This deviation can be attributed to the fact that
the initial condition ð1; 20Þ corresponds to a
quite singular distribution, with a high peak at
i ¼ 1: A continuous approximation for such a
distribution is arguably expected to give a poor
description of the real situation.

4.2. COMPUTATIONAL MEASUREMENT

OF TRANSIENTS

Equation (18) defines, within the first-order
approximation, the boundary that separates the
asymptotic regime and the zone dominated by
the initial condition. Alternatively, for a fixed
family size, it can be used to determine the
transient before the asymptotic distribution
builds up at that size. In order to test this aspect
of the first-order approximation, we have
devised an independent computational method
to evaluate the point at which the cut-off
between the two regimes actually takes place.
According to eqns (16) and (28), the asymptotic
normalized distribution of family sizes is pN

i �
piðs-NÞEðz� 1Þi�z: In numerical realizations,
the distribution is expected to adopt values very
close to pN

i for large i and large enough s: In the
simulations, we fix a certain family size iT and
stop the calculation at the step sT when the
measured value of piT satisfies, for the first time,
jpiT � pN

iT joD: The results presented in the
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parameters that define the transient (see text) are iT ¼ 102 an
following correspond to the choice iT ¼ 102

and D ¼ 10�1: Since, as shown in Section 4.1,
the agreement between the numerical simula-
tions of the stochastic birth–death model and the
iterative solution of the corresponding average
equations is very good, we use this second
description to measure the transient sT :
We focus the analysis on the dependence with

the initial conditions, and keep the values of a ¼
10�2 and m ¼ 0 fixed. As far as aE0; the results
are qualitatively the same for other values of m:
We consider initial conditions of the form
ði0;N0Þ; as defined in Section 4.1. Figure 4 shows
the transient sT measured from the numerical
solution to eqns (6) and (7) according to the
criterion introduced above, as a function of i0
and N0: On the one hand, for small N0 and,
especially, for small i0; sT varies quite irregularly.
On the other hand, we see that for larger values
of i0 and N0; say i0410 and N045; sT exhibits a
well-defined linear dependence with both para-
meters. In this regime, the transient is well
approximated by

sT ¼ ai0N0: ð29Þ

Linear fitting of sT as a function of i0 and N0 for
the data shown in Fig. 4 yields a ¼ 23774: Note
that eqn (29) implies that, for large i0 and N0 the
transient length is proportional to the initial
population P0 ¼ i0N0: This is to be compared
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the initial parameters i0 and N0; for a ¼ 10�2 and m ¼ 0: The
d D ¼ 10�1:
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with the analogous result within the first-order
approximation, eqn (18), which implies

sT ¼
P0
1� m

ið1�mÞ=ð1�a�mÞ
T � 1

h i
: ð30Þ

The first-order approximation predicts then a
proportionality between sT and P0Findepen-
dently of the values of a and mFin full
agreement with the numerical results. We point
out, however, that the corresponding propor-
tionality coefficients cannot be directly com-
pared. In fact, the coefficient a in eqn (29) is
evaluated following the computational definition
of the transient, and thus depends on the
parameter D; which has no correlate in the
analytical approach. Note, nevertheless, that for
aE0 and m ¼ 0 eqn (30) predicts a coefficient
approximately equal to iT ¼ 100; which is of the
same order as the numerical result.

4.3. EVOLUTION OF SURNAME DIVERSITY

As discussed in Section 3, the evolution of the
average number %NðsÞ of different surnames is
driven in our model by two competing mechan-
isms. The diversity increases due to the appear-
ance of new surnames at rate a; and surnames
borne by single individuals disappear when the
individual in question dies. Within the first-order
continuous approximation to our model, for
mo1; the average number of different surnames
increases linearly with s as %NðsÞ ¼ N0 þ as (see
Section 3.2). In this approximation, the death
probability m plays a role in the variation of
diversity as a function of time, eqn (22). On the
one hand, increase of the surname diversity in
a steadily growing population is generally
expected when new surnames are created at a
constant rate. On the other, it is possible to
conceive special situations where the number of
different surnames should temporarily decrease,
violating the first-order approximation. Imagine,
for instance, that the initial population consists
of an ensemble of families with only one
individual each. For moderate values of m and
small a; the initial stage would be characterized
by the death of some individuals, with the
consequent disappearance of their surnames,
and no significative appearance of new sur-
names. Since the total population grows, how-
ever, %NðsÞ will eventually attain a minimum and,
from then on, will increase.
To illustrate this situation, we numerically

solve eqns (13)–(15) for the initial condition
ð1; 20Þ; with 20 families of one individual each.
Note that this is the initial condition for which
we detected the largest deviations from the first-
order approximation in Section 4.1. Figure 5
shows the evolution of %NðsÞ for different values
of m: As expected, an initial transient where the
surname diversity drops is found for m > 0: The
transient is longer and the minimum in N ðsÞ is
deeper as m grows. In all cases, however, the
subsequent growth of %NðsÞ is clearly seen. Note
that the slope of this growth depends slightly on
m; a feature not predicted by the first-order
continuous approximation.
These long transients where (for large m and

suitable initial conditions) the number of differ-
ent surnames is expected to decrease could be
relevant to the description of modern popula-
tions with declining diversity (Cavalli-Sforza &
Feldman, 1981; Legay & Vernay, 1999). A
realistic description of this situation should
however take into account that, in recent times,
the relative values of birth and death rates in
actual populations have considerably changed.
The general trend to population growth ob-
served worldwide in the 19th century has by now
been reversed in many developed areas, such
as in Europe, where the total population is
practically stationary. In our model, this corre-
sponds to an increment in the value of m to
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values close to unity. In particular, the death
probability must be allowed to vary with time.
Additionally, if the description is expected to
encompass the periods where the appearance
of new surnames was frequentFspecifically, the
Middle Ages in the case of EuropeFa should
also change during the evolution.
As a qualitative demonstration of the effect of

varying the model parameters with time, we
focus the attention on a change of m from a low
value to a high value. For the initial condition
ð1; 20Þ we fix m ¼ 0 during the first s0 evolution
steps. Then, m is left to increase linearly with s;
such that it reaches unity after s1 additional
steps. In the numerical calculations shown in
Fig. 6 we fix s1 ¼ 103 and consider several values
of s0: For sos0; the number of different
surnames increases (cf. Fig. 5). Then, as the
death probability grows, %NðsÞ attains a max-
imum and begins to decrease. For asymptotically
large times, it is expected to approach a
stationary value, as predicted for the case m ¼
1 in Section 3.3. Interestingly, %NðsÞ responds
faster to the effects of growing m for smaller
values of s0; where the contribution of the initial
condition is still important during the variation
of the death probability. The asymptotic
surname distribution seems to be, in this
sense, quite robust to the action of varying m:
This feature should be related to the fact that
the asymptotic distribution is rather insensitive
to the value of m; as discussed at the end of
Section 3.2.
5. Comparison of the Model with Field Data

Finally, we compare some of the analytical
results for our model, derived under several
approximations in Section 3.2, with actual data
from three modern populations. Specifically, we
focus the attention on the second-order approx-
imation, eqn (23), for the asymptotic distribution
of surnames in the range of small family sizes,
where the effect of the initial condition is
negligible. In fact, it is virtually impossible to
extract information on the distribution of
surnames in historical times from the data
presently available. We recall that eqn (23)
correctly describes the asymptotic power law
nðy; zÞpy�z with zE2; as observed in real data.
The validity of our second-order approximation
is therefore to be especially evaluated in the
region of very small family sizes, where the
distribution differs from the power law.
Our three data sets were obtained from

surname counts in telephone books. They
correspond to (i) the almost 350 000 different
surnames of the whole 1996 Argentine telephone
book, (ii) the 6400 surnames beginning by A in
the 1996 Berlin telephone book, and (iii) the
surnames in five Japanese cities, with popula-
tions ranging between 2� 103 and 2� 105;
reported by Miyazima et al. (2000). Let us point
out that the three populations involved here
have considerably different demographic his-
tory. The modern Argentine population has
predominantly European ancestors, who immi-
grated mainly in the period 1880 –1915 and just
after the World War II. Their surname distribu-
tion has therefore to be considered as a
combined sample from the countries that con-
tributed the immigrants. From the times of the
largest immigration waves to the present, both
the birth and death rates have substantially
changed. As for Berlin, this city was practically
abandoned in the late stages of World War II
and subsequently repopulated with a mixture of
the ancient inhabitants and newcomers from
other cities of Germany. In this case, the
surname distribution has consequently resulted
from a combination of several German regions.
The modern population in Berlin, in addition,
presents the particularity of having been artifi-
cially separated into two practically immiscible
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groups during several decades, ending in 1989.
Since European surnames appeared mostly
during the Middle Ages (Legay & Vernay,
1999), the populations that contributed sur-
names to both Argentina and Berlin are expected
to have developed the asymptotic surname
distribution on a substantial range of family
sizes. This situation contrasts with the case of
modern Japanese surnames, that were originated
some 120 years ago (Miyazima et al., 2000). In
Japan, moreover, the contribution of immigra-
tion in the relevant period should have been
considerably less important than in Berlin and
Argentina.
Explicit evaluation of eqn (23) requires fixing

the values of the mutation rate a and the death
probability m: We know that the mutation rate,
i.e. the probability that a new individual acquires
a surname not previously present in the popula-
tion, is very low for any modern society. Since,
as far as aa0; the limit of eqn (23) for a-0 is
well defined, fixing any sufficiently small value
for a gives a correct description of nðy; zÞ: In our
comparison with real data, we have taken a ¼
10�3: As for the death probability m; unfortu-
nately, we have found it impossible to fix a
reliable value. For all real populations, mortality
has considerably changed during the periods
relevant to the evolution of surname frequencies.
Moreover, since m measures the relative fre-
quency of death and birth eventsFthe latter also
including, in real populations, arrival of new
individuals by immigrationFan evaluation of
the death probability should also involve a
detailed description of immigration effects. On
the other hand, as discussed at the end of Section
3.2, the asymptotic profile of nðy; zÞ; given by
eqn (23), is practically independent of the death
probability as far as m is not close to unity. We
therefore decided to fit the field data with
eqn (23) allowing m to vary in order to get the
best approximation in the relevant zone of small
family sizes.
Figure 7 shows the three data sets and the

corresponding fittings with eqn (23). Fittings
have been optimized in the domain of small
family sizes, where our analytical approximation
is expected to hold. In the case of Argentina, the
agreement with real data is excellent up to family
sizes above i ¼ 100: Only for i > 200 a systematic
deviation is observed, where the analytical result
overestimates the frequency. According to our
discussion in Section 3.2, this deviation would be
the remnant contribution of initial conditions.
For the Berlin data, the statistics are poorer.
However, it is clear that the analytical approx-
imation fits the data with good precision in
the whole range shown here. In the case of
the Japanese data the fitting is very good for
relatively small family sizes, io10; but, on the
other hand, noticeable systematic deviations
appear for i > 20: This agrees with our expecta-
tion on the effect of initial conditions. In the 120
years elapsed from the appearance of modern
Japanese family names, the population in the
cities from which the present data were obtained
has increased by a factor of, at most, order 10.
Therefore, according to eqn (18), initial condi-
tions should contribute to the distribution for
relatively small family sizes, i410; just as
observed.
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6. Discussion

We have analysed a birth–death model with
overlapping generations, in order to study
several statistical properties of monoparental
inheritance in large populations. We have
focused the analysis on a cultural trait, namely,
the distribution of surnames, taking advantage
of the availability of big corpora of real data.
However, the model applies generally to biolo-
gical traits associated with non-recombining
alleles. Our model has two parameters, namely,
the probability that a new individual carries a
surname not present in the population, a; and
the average number of death events per birth m:
For any value of a > 0 the system attains a
broad, stationary distribution of surname diver-
sity. If mo1 the total population grows expo-
nentially in time and so does the total number
of different surnames. The marginal case m ¼ 1
corresponds to constant total population and,
on average, to constant surname diversity for
asymptotically large times.
Our analytical results for the stationary

distribution of surnames frequency are in good
agreement with field data for modern human
populations in different countries. Through an
analysis of the transient time required for this
distribution to reach its asymptotic shape, we
have shown that some deviations observed in
real data might actually reflect the composition
of the founder population. This result has
implications in the study of polyphyletism.
Indeed, if the same surname can have multiple
origins and thus the individuals carrying it are
not always phylogenetically related, this will
affect the shape of the surname distribution. In
particular, it is not difficult to estimate the time
when surnames originated in a population (using
historical records) or, in the biological counter-
part, when a mutant allele first appeared
(through molecular clock analysis). Then, the
approximate cut-off until which the stationary
distribution follows the asymptotic shape can be
calculated. If the distribution underestimates the
frequency of values larger than the cut-off, the
system is mainly polyphyletic. If it overestimates
that frequency, then the simultaneous appear-
ance of many individual carrying different
surnames took place in the past.
The strong resemblance between the cultural
inheritance of the surname and the biological
process in which non-recombining neutral alleles
are passed to offspring has justified to apply
results from field data in the former case to the
latter (Barrai et al., 1996). In the few cases where
data on genetic diversity was available, it was
possible to retrieve information on past popula-
tions by comparing both sets of data (Sykes &
Irven, 2000). A specific example comes from the
small island of Tristan da Cunha, where the fact
that its 300 inhabitants represent only seven
surnames and five mitochondrial lineages reflects
without doubt the small size of the founder
population (Soodyall et al., 1997).
Our results could be applied to population

genetics under some hypotheses. Indeed, we are
assuming that the number of different alleles at
a given locus is practically infinite [this is
analogous to the assumption made by Kimura
& Crow (1964), in their model of infinitely many
alleles], since the possibility of backward muta-
tions is discarded. Nonetheless, this factor could
be accounted for just by lowering the value of a;
because this process implies that the ‘‘new’’
mutant is in fact identical to one of the forms
present in the population. Since, as long as a is
small, our results are not sensibly modified, we
could also work with a finite but large number R
of different surnames (equivalently, large genetic
polymorphism), and use the same model as long
as the current diversity is lower than R:We have
also assumed that the death rate is constant
during the lifetime of individuals, while it is
known that the life expectancy depends not only
on the age of individuals, but also varies as a
function of time (Vaupel et al., 1998). A more
realistic model of human inheritance could be
constructed by taking into account the variation
of m along the lifetime of each individual.
The evolution of surname diversity follows

truly neutral evolution: family names do not
fulfill any practical purpose but identifying
the lineage of each individual. They cannot be
selected for through natural selection. Hence, as
we have shown, their statistical distribution
closely follows the predictions of a neutral model
of monoparental inheritance. It would be inter-
esting to test our theoretical results against the
genetic diversity of a large population sample.
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Unfortunately, however, data on frequencies of
allelic polymorphisms are still scarce to carry out
a massive study like the one presented here
for actual surname distributions. Moreover, one
should make sure that the different haplotypes
in the sample do not confer any advantage to
the individuals, in which case positive feed-
backs and deviations from neutral statistics
would be expected. Different tests have been
proposed in the literature to detect deviations
from neutrality (Nielsen, 2001; Fu & Li, 1993),
and a number of neutral haplotypes have been
positively identified (S!anchez Mazas et al., 1994;
Stenoien, 1999). Hopefully, enough data
will be available in a near future to cal-
culate reliable diversity distributions in human
populations.

We thank M. Montemurro for kindly supplying
the whole surname count from the 1996 Argentine
telephone book.
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Appendix A

Average Evolution of the Total Population

As explained in the main text, at each step,
the total population P ðsÞ in our model either
increases by 1 with probability 1� m; due to the
occurrence of a birth event and no death event,
or remains constant with probability m; due to
the occurrence of both a birth and a death event.
Equations (1) and (2) quantify the corresponding
stochastic process.
Since the total population changes during the

evolution, the time interval dt to be associated
with each stepFwhich corresponds to the interval
between consecutive birthsFmust also change. In
fact, the birth frequency is proportional to the
total population, so that dt is inversely propor-
tional to P ðtÞ: We write, at step s;

dtðsÞ ¼
1

nP ðsÞ
; ðA:1Þ

where the frequency n fixes time units.
In consequence, the real-time average varia-

tion in P ðsÞ can be obtained from

d %P

dt
E

P ðsþ 1Þ � P ðsÞ
dtðsÞ

� �

¼ n½1� wðsÞ	P ðsÞ ¼ nð1� mÞ %P; ðA:2Þ
where overlines indicate average over realiza-
tions of the stochastic process wðsÞ: To obtain
this average evolution equation we have used
eqn (1), and have taken into account that wðsÞ
and P ðsÞ are independent stochastic processes at
each step s; so that wðsÞP ðsÞ ¼ %wðsÞ %PðsÞ ¼ m %PðsÞ:
If n is identified with the birth rate per

individual and unit time, the product nm is the
mortality rate. For constant n and m; the solution
to eqn (A.2) is

%PðtÞ ¼ P0 exp½nð1� mÞt	; ðA:3Þ

with P0 the initial population.

Appendix B

Continuous Approximation to the Distribution
of Family Sizes

Under the action of both birth and death
events, the evolution of the average number of
families of size i; %ni; is given by eqns (13) and
(15). These equations can be approximately
solved assuming that the solution varies slowly
on s and i; so that these two discrete variables
admit replacement by continuous variables z and
y; respectively. Accordingly, %niðsÞ is replaced
by a continuous function nðy; zÞ: The approx-
imation is based on the expansions %ni71ðsÞ �
nðy; zÞ7@ynðy; zÞ þ? and %niðsþ 1Þ � nðy; zÞ þ
@znðy; zÞ þ?; to be introduced in eqns (13)
and (15) at different truncation orders.

B.1. FIRST-ORDER APPROXIMATION

To the first order, we obtain the differential
equation

@n
@z

þ
1� a� m

P0 þ ð1� mÞz
@

@y
ðynÞ ¼ 0 ðB:1Þ

for y41: The contribution for y ¼ 1; given by
eqn (14), can be incorporated to (B.1) either as a
boundary condition or as a singular inhomo-
geneity in the equation itself. The latter yields

@n
@z

þ
1� a� m

P0 þ ð1� mÞz
@

@y
ðynÞ ¼ adðy � 1Þ; ðB:2Þ

where dðxÞ stands for the Dirac delta distribu-
tion. In the following, we obtain and analyse the
solution to this equation.
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Introducing the auxiliary variables

x ¼ ln 1þ
1� m
P0

z
	 


; Z ¼ ln y; ðB:3Þ

eqn (B.2) becomes

@f
@x

þ
1� a� m
1� m

@f
@Z

¼
a

1� m
dðZÞ: ðB:4Þ

with f ðZ; xÞ � ynðy; zÞ: This is a one-dimensional
wave equation, with ‘‘spatial’’ variable Z and
‘‘temporal’’ variable x: It describes shape-
preserving advection of the ‘‘density’’ f with
constant velocity v ¼ ð1� a� mÞ=ð1� mÞ; sub-
ject to the action of a point source of intensity
a=ð1� mÞ at Z ¼ 0: In our problem, thus, this
equation makes sense for v > 0 ðmo1� aÞ since
Z must be non-negative (y � iX1). The general
solution for Za0 is given by an arbitrary
combination of functions of the form f ðZ; xÞ ¼
f0ðZ� vxÞ; where f0 is in principle arbitrary. The
combination must be chosen in such a way that
the boundary and initial conditions are satisfied.
In our case, this is achieved with a combination
of two such functions. In the original variables,
the solution is given piecewise as

nðy; zÞ ¼ a
P0 þ ð1� mÞz
1� a� m

y�1�ð1�mÞ=ð1�a�mÞ ðB:5Þ

for yoyT ðzÞ; and

nðy; zÞ ¼ y�1
T nðy=yT ðzÞ; 0Þ ðB:6Þ

for y4yT ðzÞ: Here, nðy; 0Þ is the initial distribu-
tion. The transition point between the two pieces
is located at

yT ðzÞ ¼ 1þ
1� m
P0

z
	 
ð1�a�mÞ=ð1�mÞ

: ðB:7Þ

These expressions give the first-order continuous
approximation nðy; tÞ to the distribution of
families by size.
The average total number of surnames in

the continuous approximation is defined
in (21). For the first-order approximation we
find

%NðzÞ ¼
Z

N

1

nðy; zÞ dy

¼ a
P0 þ ð1� mÞz
1� a� m

Z yT

1

y�zdy

þ
Z

N

yT

nðy=yT ; 0Þ
dy
yT

:
ðB:8Þ

The last integral is clearly equal to the initial
number of surnames, N0; as may be immediately
realized by the change of variables y=yT-y:
Explicit calculation of the first integral shows
that %NðzÞ ¼ N0 þ az; i.e. exactly the same result
as for the case of m ¼ 0; eqn (11). As a function
of time, we have

%NðtÞ ¼ N0 þ
aP0
1� m

fexp½nð1� mÞt	 � 1g: ðB:9Þ

B.2. SECOND-ORDER APPROXIMATION

Truncation to the second order in the conti-
nuous approximation to eqns (13) and (15) yields

@n
@z

þ
1� a� m

P0 þ ð1� mÞz
@

@y
ðynÞ

þ
1� aþ m

2½P0 þ ð1� mÞz	
@2

@y2
ðynÞ

¼ adðy � 1Þ: ðB:10Þ

Unfortunately, this equation cannot be analyti-
cally solved for arbitrary initial conditions.
However, a particular solution can be found
in the form of a separate function, nðy; zÞ ¼
hðyÞP ðzÞ ¼ hðyÞ½P0 þ ð1� mÞz	: Comparison with
eqns (9) and(16) suggests that this particular
solution will correspond to the long-time asymp-
totic evolution. It reads

nðy; zÞ ¼
aP ðzÞ

1� a� m
2
1� a� m
1� aþ m

	 
z�1

y�1U z� 1; 0; 2
1� a� m
1� aþ m

y
	 


;
ðB:11Þ

where U ða; b; xÞ is the logarithmic Kummer’s
function (Abramowitz & Stegun, 1970).
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